《2023届吉林省吉林市名校中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届吉林省吉林市名校中考考前最后一卷数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,反比例函数(x0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )A1B2
2、C3D42tan30的值为()ABCD3一次函数与反比例函数在同一个坐标系中的图象可能是()ABCD4下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )ABCD5下列方程中有实数解的是()Ax4+16=0Bx2x+1=0CD6如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n1)个点.当n2018时,这个图形总的点数S为()A8064B8067C8068D80727九章算术是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等交易其一,金轻十三两问金、银一枚各重几何?”意思是:甲
3、袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计)问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()ABCD8下列运算正确的是( )A4x+5y=9xyB(m)3m7=m10C(x3y)5=x8y5Da12a8=a49如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=20,那么EFC的度数为()A115B120C125D13010在,0,1,这四个数中,最小的数是( )AB0CD1二、填空题(共7小题,每小题3分,满分21分)1
4、1若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是_12如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么AOC度数为_度13分解因式:x2yy_14二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”这一时间认知体系被誉为“中国的第五大发明”如图,指针落在惊蛰、春分、清明区域的概率是_15如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当ABM是等腰三角形时,M点的坐标为_16因式分解:y316y_17一个不透明的布袋里
5、装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 三、解答题(共7小题,满分69分)18(10分)如图,已知点A(2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标19(5分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计现从该校随机抽取名学生作为样本,采用问卷调查的
6、方法收集数据(参与问卷调查的每名学生只能选择其中一项)并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率20(8分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,
7、求的取值范围21(10分)如图,一艘轮船位于灯塔P的北偏东60方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45方向的B处,求此时轮船所在的B处与灯塔P的距离(参考数据:2.449,结果保留整数)22(10分)已知抛物线y=ax2+bx+c()若抛物线的顶点为A(2,4),抛物线经过点B(4,0)求该抛物线的解析式;连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6S6+8时,求x的取值范围;()若a0,c1,当x=c时,y=0,当0xc时,y
8、0,试比较ac与l的大小,并说明理由23(12分)已知二次函数y=a(x+m)2的顶点坐标为(1,0),且过点A(2,)(1)求这个二次函数的解析式;(2)点B(2,2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案24(14分)已知抛物线y=ax2+ c(a0)(1)若抛物线与x轴交于点B(4,0),且过点P(1,3),求该抛物线的解析式;(2)若a0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);(3)若a0,c 0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在
9、抛物线上且位于第四象限直线PA、PB与y轴分别交于M、N两点当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】本题可从反比例函数图象上的点E、M、D入手,分别找出OCE、OAD、矩形OABC的面积与|k|的关系,列出等式求出k值【详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MGy轴于点G,作MNx轴于点N,则SONMG=|k|又M为矩形ABCO对角线的交点,S矩形ABCO=4SONMG=4|k|,函数图象在第一象限,k0,解得:k=1故选C【点睛】本题考查反比例函数系数k的几何意义,
10、过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注2、D【解析】直接利用特殊角的三角函数值求解即可【详解】tan30,故选:D【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键3、B【解析】当k0时,一次函数y=kxk的图象过一、三、四象限,反比例函数y=的图象在一、三象限,A、C不符合题意,B符合题意;当k0时,一次函数y=kxk的图象过一、二、四象限,反比例函数y=的图象在二、四象限,D不符合题意故选B4、B【解析】由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【详解
11、】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1故选B【点睛】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.5、C【解析】A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根【详解】A.中=024116=640,方程无实数根;B.中=(1)2411=30,方程无实数根;C.x=1是方程的根;D.当x=1时,分母x2-1=0,无实数根故选:C【点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数
12、的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.6、C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次 如当n=2时,共有S2=424=4;当n=3时,共有S3=434,依此类推,即Sn=4n4,当n=2018时,S2018=420184=1 故选C点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律7、D【解析】根据题意可得等量关系:9枚黄金的重量=11枚白银的重量;(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=1
13、3两,根据等量关系列出方程组即可【详解】设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系8、D【解析】各式计算得到结果,即可作出判断【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12a8=a4,正确;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键9、C【解析】分析:由已知条件易得AEB=70,由此可得DEB=110,结合折叠的性质可得DEF=55,则由ADBC可得EFC=125,再由折叠的性质即
14、可得到EFC=125.详解:在ABE中,A=90,ABE=20,AEB=70,DEB=180-70=110,点D沿EF折叠后与点B重合,DEF=BEF=DEB=55,在矩形ABCD中,ADBC,DEF+EFC=180,EFC=180-55=125,由折叠的性质可得EFC=EFC=125.故选C.点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.10、D【解析】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在,0,1,这四个数中,最小的数是1,故选D考点:正负数的大小比较二、填空题(共7小题,每小题3分,满分21分)11、8【解析】解
15、:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.12、1【解析】首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出AOC的度数【详解】解:弦AC与半径OB互相平分,OA=AB,OA=OC,OAB是等边三角形,AOB=60,AOC=1,故答案为1【点睛】本题主要考查了垂径定理的知识,解题的关键是证明OAB是等边三角形,此题难度不大13、y(x+1)(x1)【解析】观察原式x2yy,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2yyy(x21)y(x+1)(x1)故答案为:y(x+1)(x1)【
16、点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止14、【解析】首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案【详解】如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,指针落在惊蛰、春分、清明的概率是:故答案为【点睛】此题考查了概率公式的应用注意概率所求情况数与总情况数之比15、(4,6),(82,6),(2,6)【解析】分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标【详解】解:当M
17、为顶点时,AB长为底=8,M在DC中点上, 所以M的坐标为(4, 6),当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME=2所以M的坐标为(82,6);当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF=2所以M的坐标为(2,6);综上所述,M的坐标为(4,6),(82,6),(2,6);故答案为:(4,6),(82,6),(2,6)【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.16、y(y+4)(y4)【解析】试题解析:原式 故答案为点睛:提取公因式法和公式法相结合因式分解.17、【解析】让黄球的个数除以球
18、的总个数即为所求的概率【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是故答案为:【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比三、解答题(共7小题,满分69分)18、(1)y=x2+x+3;D(1,);(2)P(3,)【解析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF
19、列方程可得m的值,从而得P的坐标【详解】解:(1)设抛物线的解析式为y=a(x+2)(x4),将点C(0,3)代入得:8a=3,解得:a=,y=x2+x+3=(x1)2+,抛物线的解析式为y=x2+x+3,且顶点D(1,);(2)B(4,0),C(0,3),BC的解析式为:y=x+3,D(1,),当x=1时,y=+3=,E(1,),DE=-=,设P(m,m2+m+3),则F(m,m+3),四边形DEFP是平行四边形,且DEFP,DE=FP,即(m2+m+3)(m+3)=,解得:m1=1(舍),m2=3,P(3,)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数
20、和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中19、(1)50;(2)240;(3).【解析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1);(2)样本中喜爱看电视的人数为(人,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率【点睛】本题考查了列表法与树状图法
21、;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.20、(1)(2)【解析】试题分析:(1)首先根据抛物线求出与轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为代入点B,点C的坐标,然后解方程组即可;( 2)求出点D、E、F的坐标,设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1;当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2从而得出.试题解析:解:(1)抛物线与轴交于点A,
22、点A的坐标为(0,2) 1分,抛物线的对称轴为直线,顶点B的坐标为(1,) 2分又点C与点A关于抛物线的对称轴对称, 点C的坐标为(2,2),且点C在抛物线上设直线BC的解析式为直线BC经过点B(1,)和点C(2,2),解得直线BC的解析式为 2分(2)抛物线中,当时,点D的坐标为(1,6) 1分直线中,当时,当时,如图,点E的坐标为(0,1),点F的坐标为(1,2)设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1; 5分当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2 6分结合图象可知,符合题意的t的取值范围是 7
23、分考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.21、此时轮船所在的B处与灯塔P的距离是98海里【解析】【分析】过点P作PCAB,则在RtAPC中易得PC的长,再在直角BPC中求出PB的长即可【详解】作PCAB于C点,APC=30,BPC=45 ,AP=80(海里),在RtAPC中,cosAPC=,PC=PAcosAPC=40(海里),在RtPCB中,cosBPC=,PB=4098(海里),答:此时轮船所在的B处与灯塔P的距离是98海里【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.22、()y=x2+3x当3+6S6+2时,x的取值范围为是x
24、或x()ac1【解析】(I)由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,当点P在第四象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0xc时y0,可得出抛物线的对称轴x=c,进而可得出b-2ac,结合b=-ac-1
25、即可得出ac1【详解】(I)设抛物线的解析式为y=a(x+2)23,抛物线经过点B(3,0),0=a(3+2)23,解得:a=1,该抛物线的解析式为y=(x+2)23=x2+3x设直线AB的解析式为y=kx+m(k0),将A(2,3)、B(3,0)代入y=kx+m,得:,解得:,直线AB的解析式为y=2x2直线l与AB平行,且过原点,直线l的解析式为y=2x当点P在第二象限时,x0,如图所示SPOB=3(2x)=3x,SAOB=33=2,S=SPOB+SAOB=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围是x当点P在第四象限时,x0,过点A作AEx轴,垂足为点E,过点P作PFx轴
26、,垂足为点F,则S四边形AEOP=S梯形AEFPSOFP=(x+2)x(2x)=3x+3SABE=23=3,S=S四边形AEOP+SABE=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围为x综上所述:当3+6S6+2时,x的取值范围为是x或x(II)ac1,理由如下:当x=c时,y=0,ac2+bc+c=0,c1,ac+b+1=0,b=ac1由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0)把x=0代入y=ax2+bx+c,得y=c,抛物线与y轴的交点为(0,c)a0,抛物线开口向上当0xc时,y0,抛物线的对称轴x=c,b2acb=ac1,ac12ac,ac1【点睛】本题
27、主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)巧设顶点式,代入点B的坐标求出a值,分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b-2ac23、(1)y=(x+1)1;(1)点B(1,1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;【解析】(1)根据待定系数法即可得出二次函数的解析式;(1)代入B(1,-1)即可判断;(3)根据题意设平移后的解析式为y=-(x
28、+1+m)1,代入B的坐标,求得m的植即可【详解】解:(1)二次函数y=a(x+m)1的顶点坐标为(1,0),m=1,二次函数y=a(x+1)1,把点A(1,)代入得a=,则抛物线的解析式为:y=(x+1)1(1)把x=1代入y=(x+1)1得y=1,所以,点B(1,1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=(x+1+m)1,把B(1,1)代入得1=(1+1+m)1,解得m=1或5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B【点睛】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换24、(1);(2)详见解析;
29、(3)为定值,=【解析】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),用待定系数法求解即可;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2),由AOEOBF,可得到,然后表示出直线AB的解析式即可得到结论;(3)作PQAB于点Q,设P(m,am2+c)、A(t,0)、B(t,0),则at2+c=0, c= at2 由PQON,可得ON=amt+at2,OM= amt+at2,然后把ON,OM,OC的值代入整理即可.【详解】(1)把点B(4,0),点P(1,3)代入y=ax2+ c(a0),解之得 ,;(2)如图作辅助线AE、BF垂直x轴,设A(m,am2)、B(n,an2),OAOB,AOE=OBF,AOEOBF,直线AB过点A(m,am2)、点B(n,an2),过点(0,);(3)作PQAB于点Q,设P(m,am2+c)、A(t,0)、B(t,0),则at2+c=0, c= at2 PQON,ON=at(m+t)= amt+at2,同理:OM= amt+at2,所以,OM+ON= 2at2=2c=OC,所以,=.【点睛】本题考查了待定系数法求函数解析式,相似三角形的判定与性质,平行线分线段成比例定理.正确作出辅助线是解答本题的关键.