2023届上海新云台中学中考数学模拟预测题含解析.doc

上传人:茅**** 文档编号:87791958 上传时间:2023-04-17 格式:DOC 页数:19 大小:946KB
返回 下载 相关 举报
2023届上海新云台中学中考数学模拟预测题含解析.doc_第1页
第1页 / 共19页
2023届上海新云台中学中考数学模拟预测题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届上海新云台中学中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2023届上海新云台中学中考数学模拟预测题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是抛物线y1=ax2+bx+c(a0)图象的一部分,其顶点坐标为A(1,3),与x轴的一个交点为B(3,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:ab

2、c0;不等式ax2+(bm)x+cn0的解集为3x1;抛物线与x轴的另一个交点是(3,0);方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是()ABCD2实数a在数轴上的位置如图所示,则下列说法不正确的是()Aa的相反数大于2 Ba的相反数是2 C|a|2 D2a03如图,在RtABC中,C=90,BC=2,B=60,A的半径为3,那么下列说法正确的是( )A点B、点C都在A内B点C在A内,点B在A外C点B在A内,点C在A外D点B、点C都在A外4按一定规律排列的一列数依次为:,1,、,按此规律,这列数中的第100个数是()ABCD5如图,已知AOB=70,OC平分AOB,DCOB,

3、则C为()A20B35C45D706如图,在平面直角坐标系xOy中,由绕点P旋转得到,则点P的坐标为( )A(0, 1)B(1, -1)C(0, -1)D(1, 0)7不等式组的解在数轴上表示为( )ABCD8 “龟兔赛跑”是同学们熟悉的寓言故事如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子)下列叙述正确的是( )A赛跑中,兔子共休息了50分钟B乌龟在这次比赛中的平均速度是0.1米/分钟C兔子比乌龟早到达终点10分钟D乌龟追上兔子用了20分钟9下列计算正确的是()A(a+2)(a2)a22B(a+1)(a2)a2+a2C(a+b)2a2+b2D(ab)

4、2a22ab+b210如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD11如图,ACB=90,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BFDE,与AE的延长线交于点F,若AB=6,则BF的长为()A6B7C8D1012根据九章算术的记载中国人最早使用负数,下列负数中最大的是( )A-1B-CD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加 _条件,可以判定

5、四边形AECF是平行四边形(填一个符合要求的条件即可)14方程=1的解是_15已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于_厘米16如图,半圆O的直径AB=2,弦CDAB,COD=90,则图中阴影部分的面积为_17用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 18如图,已知在ABC中,A=40,剪去A后成四边形,1+2=_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆若购买A型公交车1辆,B型公交车2辆,共需400万元;

6、若购买A型公交车2辆,B型公交车1辆,共需350万元求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?20(6分)如图,一次函数ykx+b与反比例函数y(x0)的图象交于A(m,6),B(3,n)两点求一次函数关系式;根据图象直接写出kx+b0的x的取值范围;求AOB的面积21(6分)已知:如图,E,F是ABCD的对角线AC上

7、的两点,BEDF.求证:AFCE22(8分)如图,AB为O的直径,点C在O上,ADCD于点D,且AC平分DAB,求证:(1)直线DC是O的切线;(2)AC2=2ADAO23(8分)如图,在O的内接四边形ABCD中,BCD=120,CA平分BCD(1)求证:ABD是等边三角形;(2)若BD=3,求O的半径24(10分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多

8、可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?25(10分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且SABC=1求a的值;当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围26(12分)解方程(1);(2)27

9、(12分)如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=CAC1,求点P的横坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】错误由题意a1b1,c1,abc1;正确因为y1=ax2+bx+c(a1)图象与直线y2=mx+n(m1)交于A,B两点,当ax2+bx+cmx+n时,-3x-1;即不等式ax2+(b-

10、m)x+c-n1的解集为-3x-1;故正确;错误抛物线与x轴的另一个交点是(1,1);正确抛物线y1=ax2+bx+c(a1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故正确【详解】解:抛物线开口向上,a1,抛物线交y轴于负半轴,c1,对称轴在y轴左边,- 1,b1,abc1,故错误y1=ax2+bx+c(a1)图象与直线y2=mx+n(m1)交于A,B两点,当ax2+bx+cmx+n时,-3x-1;即不等式ax2+(b-m)x+c-n1的解集为-3x-1;故正确,抛物线与x轴的另一个交点是(1,1),故错误,抛物线y1=ax2+bx+c(a1)图象与直线

11、y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故正确故选:D【点睛】本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题2、B【解析】试题分析:由数轴可知,a-2,A、a的相反数2,故本选项正确,不符合题意;B、a的相反数2,故本选项错误,符合题意;C、a的绝对值2,故本选项正确,不符合题意;D、2a0,故本选项正确,不符合题意故选B考点:实数与数轴3、D【解析】先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.【详解】由题意可求出A=30,A

12、B=2BC=4, 由勾股定理得AC=2, AB=43, AC=23,点B、点C都在A外.故答案选D.【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.4、C【解析】根据按一定规律排列的一列数依次为:,1,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、,型;分子为型,可得第100个数为【详解】按一定规律排列的一列数依次为:,1,按此规律,奇数项为负,偶数项为正,分母为3、7、9、,型;分子为型,可得第n个数为,当时,这个数为,故选:C【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.5、B【解析】解:OC平分AOB,

13、AOC=BOC=AOB=35,CDOB,BOC=C=35,故选B6、B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC、AA的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化旋转.7、C【解析】先解每一个不等式,再根据结果判断数轴表示的正确方法【详解】解:由不等式,得3x5-2,解得x1,由不等式,得-2x1-5,解得x2,数轴表示的正确方法为C故选C【点睛】考核知识点:解不等式组.8、D【解析】分析:根据图象得出相关信息,并对各选项一一进行

14、判断即可.详解:由图象可知,在赛跑中,兔子共休息了:50-1040(分钟),故A选项错误;乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.9、D【解析】A、原式=a24,不符合题意;B、原式=a2a2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a22ab+b2,符合题意,故选D1

15、0、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90,四边形OBGM是矩形,OM=BG=BC=,HM=O

16、HOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.11、C【解析】 ACB=90,D为AB的中点,AB=6,CD=AB=1又CE=CD,CE=1,ED=CE+CD=2又BFDE,点D是AB的中点,ED是AFB的中位线,BF=2ED=3故选C12、B【解析】根据两个负数,绝对值大的反而小比较【详解】解: 1 ,负数中最大的是故选:B【点睛】本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小二、填空题:(本大题共6个小题,每小题4分,共24分)13、BE=DF【

17、解析】可以添加的条件有BE=DF等;证明:四边形ABCD是平行四边形,AB=CD,ABD=CDB;又BE=DF,ABECDF(SAS).AE=CF,AEB=CFD.AEF=CFE.AECF;四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF14、x=3【解析】去分母得:x1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解15、1【解析】根据比例中项的定义,列出比例式即可得出

18、中项,注意线段不能为负【详解】线段c是线段a和线段b的比例中项,解得(线段是正数,负值舍去),故答案为:1【点睛】本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.16、 【解析】解:弦CDAB,SACD=SOCD,S阴影=S扇形COD=故答案为17、5【解析】试题分析:根据图形可知圆锥的侧面展开图的弧长为2102=10(cm),因此圆锥的底面半径为102=5(cm),因此圆锥的高为:=5(cm)考点:圆锥的计算18、220.【解析】试题分析:ABC中,A40,=;如图,剪去A后成四边形12+=;12220考点:内角和定理点评:本题考查三角形、四边

19、形的内角和定理,掌握内角和定理是解本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元(2)三种方案:购买A型公交车6辆,则B型公交车4辆;购买A型公交车7辆,则B型公交车3辆;购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元【解析】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元(2)设购买A型公交车a辆,则B型公交车

20、(10-a)辆,由题意得,解得:6a8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:购买A型公交车6辆,B型公交车4辆;购买A型公交车7辆,B型公交车3辆;购买A型公交车8辆,B型公交车2辆(3)购买A型公交车6辆,则B型公交车4辆:1006+1504=1200万元;购买A型公交车7辆,则B型公交车3辆:1007+1503=1150万元;购买A型公交车8辆,则B型公交车2辆:1008+1502=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量

21、关系,列出方程组或不等式组解决问题20、(1)y2x1 ;(2)1x2 ;(2)AOB的面积为1 .【解析】试题分析:(1)首先根据A(m,6),B(2,n)两点在反比例函数y=(x0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可(2)由-2x+1-0,求出x的取值范围即可(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出AOB的面积是多少即可试题解析:(1)A(m,6),B(2,n)两点在反比例函数y=(x0)的图象上,6=,解得m=1,n=2,A(1,6),B(2,2),A(1,6),B(2,2

22、)在一次函数y=kx+b的图象上,解得,y=-2x+1(2)由-2x+1-0,解得0x1或x2(2)当x=0时,y=-20+1=1,C点的坐标是(0,1);当y=0时,0=-2x+1,解得x=4,D点的坐标是(4,0);SAOB=41-11-42=16-4-4=121、参见解析【解析】分析:先证ACB=CAD,再证出BECDFA,从而得出CE=AF详解:证明:平行四边形中,又, 点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.22、(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分DAB知OAC=OCA=DAC,据此知OCAD,根据ADDC即可得

23、证;(2)连接BC,证DACCAB即可得详解:(1)如图,连接OC,OA=OC,OAC=OCA,AC平分DAB,OAC=DAC,DAC=OCA,OCAD,又ADCD,OCDC,DC是O的切线;(2)连接BC,AB为O的直径,AB=2AO,ACB=90,ADDC,ADC=ACB=90,又DAC=CAB,DACCAB,即AC2=ABAD,AB=2AO,AC2=2ADAO点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质23、(1)详见解析;(2).【解析】(1)因为AC平分BCD,BCD120,根据角平分线的定义得:ACDACB60,根据同弧所对的圆周角相等

24、,得ACDABD,ACBADB,ABDADB60.根据三个角是60的三角形是等边三角形得ABD是等边三角形.(2)作直径DE,连结BE,由于ABD是等边三角形,则BAD60,由同弧所对的圆周角相等,得BEDBAD60.根据直径所对的圆周角是直角得,EBD90,则EDB30,进而得到DE2BE.设EBx,则ED2x,根据勾股定理列方程求解即可.【详解】解:(1)BCD=120,CA平分BCD,ACD=ACB=60,由圆周角定理得,ADB=ACB=60,ABD=ACD=60,ABD是等边三角形;(2)连接OB、OD,作OHBD于H,则DH=BD=,BOD=2BAD=120,DOH=60,在RtOD

25、H中,OD=,O的半径为【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.24、 (1) 21x62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元【解析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y380x280(62x)100x17

26、360,30x20(62x)1441,x20.1,21x62且x为整数;(2)由题意得100x1736021940,解得x45.8,21x45且x为整数,共有25种租车方案,k1000,y随x的增大而增大,当x21时,y有最小值, y最小100211736019460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题25、 (1) ac3;(3)a=1;m或m【解析】(1)设A(p,q)则B(-p,-q),把A、B坐标代入解析

27、式可得方程组即可得到结论;(3)由c=-1,得到p3,a3,且C(3,-1),求得p,根据三角形的面积公式列方程即可得到结果;由可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4)得到这些MN的解析式yx+(-1x3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到()若-1x13且x33,()若x1-1且-1x33:列方程组即可得到结论【详解】(1)设A(p,q)则B(-p,-q),把A、B坐标代入解析式可得:,3ap3+3c=3即p3,3,ac3,3,ac

28、3;(3)c=-1,p3,a3,且C(3,-1),p,SABC=31=1,a=1;由可知:抛物线解析式为y=x3-3mx-1,M(-1,1)、N(3,4)MN:yx+(-1x3),依题,只需联立在-1x3内只有一个解即可,x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,=(3m+)3+113且c=-3,抛物线yx3(3m+)x与x轴有两个交点,且交y轴于负半轴不妨设方程x3(3m+)x3的两根分别为x1,x3(x1x3)则x1+x33m+,x1x3方程x3(3m+)x3在-1x3内只有一个解故分两种情况讨论:

29、()若-1x13且x33:则即:,可得:m()若x1-1且-1x33:则即:,可得:m,综上所述,m或m【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键26、(1),;(2),【解析】(1)利用公式法求解可得;(2)利用因式分解法求解可得【详解】(1)解:,;(2)解:原方程化为:,因式分解得:,整理得:,或,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键27、 (1)yx2x4(2)点M的坐标为(2,4

30、)(3)或【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM(m2)212. 当m2时,四边形OAMC面积最大,此时阴影部分面积最小; (3) 抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.先求AC4,CDC1D,AD43;设点P ,过P作PQ垂直于x轴,垂足为Q. 证PAQC1AD,得,即,解得解得n,或n,或n4(舍去).【详解】(1)

31、抛物线的解析式为y (x4)(x2)x2x4.(2)连接OM,设点M的坐标为. 由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM 4m 4 m24m8(m2)212.当m2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,4)(3)抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.OAOC,AOC90,CDC190,AC4,CDC1D,AD43,设点P ,过P作PQ垂直于x轴,垂足为Q.PABCAC1,AQPADC1,PAQC1AD,即 ,化简得 (82n),即3n26n2482n,或3n26n24(82n),解得n,或n,或n4(舍去),点P的横坐标为或.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁