2023届云南省南涧彝族自治县市级名校中考四模数学试题含解析.doc

上传人:茅**** 文档编号:87791899 上传时间:2023-04-17 格式:DOC 页数:19 大小:827.50KB
返回 下载 相关 举报
2023届云南省南涧彝族自治县市级名校中考四模数学试题含解析.doc_第1页
第1页 / 共19页
2023届云南省南涧彝族自治县市级名校中考四模数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届云南省南涧彝族自治县市级名校中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届云南省南涧彝族自治县市级名校中考四模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如果关于x的分式方程有负分数解,且关于x的不等式组的解

2、集为x-2,那么符合条件的所有整数a的积是 ( )A-3B0C3D92如图1,在矩形ABCD中,动点E从A出发,沿ABC方向运动,当点E到达点C时停止运动,过点E作EFAE交CD于点F,设点E运动路程为x,CFy,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:a3;当CF时,点E的运动路程为或或,则下列判断正确的是( )A都对B都错C对错D错对3如图,AB是O的直径,弦CDAB于E,CDB=30,O的半径为,则弦CD的长为( )AB3cmCD9cm4李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是已知:如图,在中,点D,E,F分

3、别在边AB,AC,BC上,且,求证:证明:又,ABCD52022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )A1210B1.210C1.210D0.12106如图,ABCD,直线EF与AB、CD分别相交于E、F,AMEF于点M,若EAM=10,那么CFE等于()A80B85C100D1707我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()ABCD8已知关于x的一元二次方程有实数根,则m的取值范

4、围是( )ABCD9如图,若二次函数y=ax2+bx+c(a0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(1,0),则二次函数的最大值为a+b+c;ab+c0;b24ac0;当y0时,1x3,其中正确的个数是()A1B2C3D410已知:如图,在平面直角坐标系xOy中,等边AOB的边长为6,点C在边OA上,点D在边AB上,且OC3BD,反比例函数y(k0)的图象恰好经过点C和点D,则k的值为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,ABC中,AB=AC,D是AB上的一点,且AD=AB,DFBC,E为BD的中点若EFAC,BC=6,则四边形DBC

5、F的面积为_12如果a2b2=8,且a+b=4,那么ab的值是_13一组数据1,4,4,3,4,3,4的众数是_14如图,在ABC中,AB3+,B45,C105,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_15若am=2,an=3,则am + 2n =_16如图,ABCD,1=62,FG平分EFD,则2= .三、解答题(共8题,共72分)17(8分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF连接BF,作EHBF所在直线于点H,连接CH(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是_;

6、(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值18(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查根据调查数据绘制了如下所示不完整统计图条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量

7、的比请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?19(8分)化简:.20(8分)某商场经营某种品牌的童装,购进时的单价是60元根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?21(8分)先化简分式: (-),再从-3、-3、2、-2中选一个你喜欢的数作为的值代入求值22(10分)

8、为了解朝阳社区岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图请根据图中信息解答下列问题:求参与问卷调查的总人数补全条形统计图该社区中岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数23(12分)如图所示,在ABC中,BO、CO是角平分线ABC50,ACB60,求BOC的度数,并说明理由题(1)中,如将“ABC50,ACB60”改为“A70”,求BOC的度数若An,求BOC的度数24如图,AB为O的直径,D为O上一点,以AD为斜边作ADC,使C=90,CAD=DAB求证:DC是O的切线

9、;若AB=9,AD=6,求DC的长参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:,由得:x2a+4,由得:x2,由不等式组的解集为x2,得到2a+42,即a3,分式方程去分母得:a3x3=1x,把a=3代入整式方程得:3x6=1x,即,符合题意;把a=2代入整式方程得:3x5=1x,即x=3,不合题意;把a=1代入整式方程得:3x4=1x,即,符合题意;把a=0代入整式方程得:3x3=1x,即x=2,不合题意;把a=1代入整式方程得:3x2=1x,即,符合题意;把a=2代入整式方程得:3x1=1x,即x=1,不合题意;把a=3代入整式方程得:3x=1x,即,符合题意;

10、把a=4代入整式方程得:3x+1=1x,即x=0,不合题意,符合条件的整数a取值为3;1;1;3,之积为1故选D2、A【解析】由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得ABEECF,继而根据相似三角形的性质可得y=,根据二次函数的性质可得,由此可得a=3,继而可得y=,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断【详解】解:由已知,AB=a,AB+BC=5,当E在BC上时,如图,E作EFAE,ABEECF,y=,当x=时,解得a1=3,a2=(舍去),y=,当y=时,=,解得x1=,x2=,当E在AB上时,y=时,x=3=,故

11、正确,故选A【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键3、B【解析】解:CDB=30,COB=60,又OC=,CDAB于点E,解得CE=cm,CD=3cm故选B考点:1垂径定理;2圆周角定理;3特殊角的三角函数值4、B【解析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:,又,故选B【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似5、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原数变成a时

12、,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】数据12000用科学记数法表示为1.2104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.6、C【解析】根据题意,求出AEM,再根据ABCD,得出AEM与CFE互补,求出CFE【详解】AMEF,EAM=10AEM=80又ABCDAEM+CFE=180CFE=100故选C【点睛】本题考查三角形内角和与两条直线平行内错角相等7、C【解析】主视图、左视图、俯视图是分别从物体

13、正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到矩形的图形【详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误故选C【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答8、C【解析】解:关于x的一元二次方程有实数根,=,解

14、得m1,故选C【点睛】本题考查一元二次方程根的判别式9、B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案详解:二次函数y=ax2+bx+c(a0)图象的对称轴为x=1,且开口向下,x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故正确;当x=1时,ab+c=0,故错误;图象与x轴有2个交点,故b24ac0,故错误;图象的对称轴为x=1,与x轴交于点A、点B(1,0),A(3,0),故当y0时,1x3,故正确故选B点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键10、A【解析】试题分析:过点C作CEx轴于点E,

15、过点D作DFx轴于点F,如图所示设BD=a,则OC=3aAOB为边长为1的等边三角形,COE=DBF=10,OB=1在RtCOE中,COE=10,CEO=90,OC=3a,OCE=30,OE=a,CE= = a,点C(a, a)同理,可求出点D的坐标为(1a,a)反比例函数(k0)的图象恰好经过点C和点D,k=aa=(1a)a,a=,k=故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】解:如图,过D点作DGAC,垂足为G,过A点作AHBC,垂足为H,AB=AC,点E为BD的中点,且AD=AB,设BE=DE=x,则AD=AF=1xDGAC,EFAC,DGEF,即,解得D

16、FBC,ADFABC,即,解得DF=1又DFBC,DFG=C,RtDFGRtACH,即,解得在RtABH中,由勾股定理,得又ADFABC,故答案为:212、1【解析】根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案【详解】a1-b1=8,(a+b)(a-b)=8,a+b=4,a-b=1,故答案是:1【点睛】考查了平方差,关键是掌握(a+b)(a-b)=a1-b113、1【解析】本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个【详解】在这一组数据中1是出现次数最多的,故众数是1故答案为1【点睛】本题为统计题,考查了众数

17、的定义,是基础题型14、【解析】如图,连接OD,BD,作DHAB于H,EGAB于G由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PBBD,推出PF+PB的最小值是线段BD的长【详解】如图,连接OD,BD,作DHAB于H,EGAB于G四边形ADEF是菱形,F,D关于直线AE对称,PF=PD,PF+PB=PA+PB,PD+PBBD,PF+PB的最小值是线段BD的长,CAB=180-105-45=30,设AF=EF=AD=x,则DH=EG=x,FG=x,EGB=45,EGBG,EG=BG=x,x+x+x=3+,x=2,DH=1,BH=3,BD

18、=,PF+PB的最小值为,故答案为【点睛】本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题15、18【解析】运用幂的乘方和积的乘方的运算法则求解即可.【详解】解:am=2,an=3,a3m+2n=(am)3(an)2=2332=1故答案为1【点睛】本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键16、31【解析】试题分析:由ABCD,根据平行线的性质得1=EFD=62,然后根据角平分线的定义即可得到2的度数ABCD,1=EFD=62,FG平分EFD,2=EFD=62=31故答案是31考点:平行线的性质三、解答题(共8题,共7

19、2分)17、(1)CH=AB;(2)成立,证明见解析;(3)【解析】(1)首先根据全等三角形判定的方法,判断出ABFCBE,即可判断出1=2;然后根据EHBF,BCE=90,可得C、H两点都在以BE为直径的圆上,判断出4=HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可(2)首先根据全等三角形判定的方法,判断出ABFCBE,即可判断出1=2;然后根据EHBF,BCE=90,可得C、H两点都在以BE为直径的圆上,判断出4=HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可(3)首先根据三角形三边的关系,可得CKAC+AK,据此判断出当C、A、K三点共线时

20、,CK的长最大;然后根据全等三角形判定的方法,判断出DFKDEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出DAKDCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可【详解】解:(1)如图1,连接BE,在正方形ABCD中,AB=BC=CD=AD,A=BCD=ABC=90,点E是DC的中点,DE=EC,点F是AD的中点,AF=FD,EC=AF,在ABF和CBE中,ABFCBE,1=2,EHBF,BCE=90,C、H两点都在以BE为直径的圆上,3=2,1=3,3+4=90,1+HBC=90,4=HBC,CH=BC,又AB=BC,C

21、H=AB(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立如图2,连接BE,在正方形ABCD中,AB=BC=CD=AD,A=BCD=ABC=90,AD=CD,DE=DF,AF=CE,在ABF和CBE中, ABFCBE,1=2,EHBF,BCE=90,C、H两点都在以BE为直径的圆上,3=2,1=3,3+4=90,1+HBC=90,4=HBC,CH=BC,又AB=BC,CH=AB(3)如图3,CKAC+AK,当C、A、K三点共线时,CK的长最大,KDF+ADH=90,HDE+ADH=90,KDF=HDE,DEH+DFH=360-ADC-EHF=360-90-90=180,

22、DFK+DFH=180,DFK=DEH,在DFK和DEH中,DFKDEH,DK=DH,在DAK和DCH中,DAKDCH,AK=CH又CH=AB,AK=CH=AB,AB=3,AK=3,AC=3,CK=AC+AK=AC+AB=,即线段CK长的最大值是考点:四边形综合题18、(1)作图见解析;(2)1【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=2040%=50人,八年级被抽到的志愿者:5030%=15人九年级被抽到的志愿者:5020%=10人,条形图如图所示:(

23、2)该校共有志愿者600人,则该校九年级大约有60020%=1人答:该校九年级大约有1名志愿者19、【解析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果【详解】解:原式20、(1);(2);(3)最多获利4480元.【解析】(1)销售量y为200件加增加的件数(80x)20;(2)利润w等于单件利润销售量y件,即W=(x60)(20x+1800),整理即可;(3)先利用二次函数的性质得到w=20x2+3000x108000的对称轴为x=75,而20x+1800240,x78,得76x78,根据二次函数的性质得到当76x78时,W随x的增大而减小,把x

24、=76代入计算即可得到商场销售该品牌童装获得的最大利润【详解】(1)根据题意得,y=200+(80x)20=20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=20x+1800(60x80);(2)W=(x60)y=(x60)(20x+1800)=20x2+3000x108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=20x2+3000x108000;(3)根据题意得,20x+1800240,解得x78,76x78,w=20x2+3000x108000,对称轴为x=75,a=200,抛物线开口向下,当76x78时,W随x的增大而减小,x=76时,

25、W有最大值,最大值=(7660)(2076+1800)=4480(元)所以商场销售该品牌童装获得的最大利润是4480元【点睛】二次函数的应用21、 ;5【解析】原式=(-)=a=2,原式=522、(1)参与问卷调查的总人数为500人;(2)补全条形统计图见解析;(3)这些人中最喜欢微信支付方式的人数约为2800人【解析】(1)根据喜欢支付宝支付的人数其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(4160岁)=参与问卷调查的总人数现金支付所占各种支付方式的比例-15,即可求出喜欢现金支付的人数(4160岁),再将条形统计图补充完整即可得出结论;(3)

26、根据喜欢微信支付方式的人数=社区居民人数微信支付所占各种支付方式的比例,即可求出结论【详解】(1)(人答:参与问卷调查的总人数为500人(2)(人补全条形统计图,如图所示(3)(人答:这些人中最喜欢微信支付方式的人数约为2800人【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(4160岁);(3)根据样本的比例总人数,估算出喜欢微信支付方式的人数23、(1)125;(2)125;(3)BOC=90+n【解析】如图,由BO、CO是角平分线得ABC=21,ACB=22,再利用三角形内角和得到ABC

27、+ACB+A=180,则21+22+A=180,接着再根据三角形内角和得到1+2+BOC=180,利用等式的性质进行变换可得BOC=90+A,然后根据此结论分别解决(1)、(2)、(3)【详解】如图,BO、CO是角平分线,ABC=21,ACB=22,ABC+ACB+A=180,21+22+A=180,1+2+BOC=180,21+22+2BOC=360,2BOCA=180,BOC=90+A,(1)ABC=50,ACB=60,A=1805060=70,BOC=90+70=125;(2)BOC=90+A=125;(3)BOC=90+n【点睛】本题考查了三角形内角和定理:三角形内角和是180主要用在

28、求三角形中角的度数:直接根据两已知角求第三个角;依据三角形中角的关系,用代数方法求三个角;在直角三角形中,已知一锐角可利用两锐角互余求另一锐角24、(1)见解析;(2)【解析】分析:(1)如下图,连接OD,由OA=OD可得DAO=ADO,结合CAD=DAB,可得CAD=ADO,从而可得ODAC,由此可得C+CDO=180,结合C=90可得CDO=90即可证得CD是O的切线;(2)如下图,连接BD,由AB是O的直径可得ADB=90=C,结合CAD=DAB可得ACDADB,由此可得,在RtABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.详解:(1)如下图,连接ODOA=OD,DAB=ODA,CAD=DAB,ODA=CADACODC+ODC=180C=90ODC=90ODCD,CD是O的切线(2)如下图,连接BD,AB是O的直径,ADB=90,AB=9,AD=6,BD=3,CAD=BAD,C=ADB=90,ACDADB,CD=点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁