《2023届四川成都锦江区重点名校毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川成都锦江区重点名校毕业升学考试模拟卷数学卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,直线mn,1=70,2=30,则A等于( ) A30B35C40D502估计1的值在()A1和2之间B2和3之间C3和4之间D4和5之间3有15位同学参加歌咏
2、比赛,所得的分数互不相同,取得分前8位同学进入决赛某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A平均数B中位数C众数D方差4如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为()A5B4C3D25如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)6如图,直角边长为的等腰直角三角形
3、与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )ABCD7小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A1BCD8将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()ABCD9不论x、y为何值,用配方法可说明代数式x2+4y2+6x4y+11的值()A总不小于1 B总不小于11C可为任何实数 D可能为负数10如图,BD是ABC的角平分线,DCAB,下列说法正确的是()ABC=CDBADBCCAD=BCD点
4、A与点C关于BD对称二、填空题(共7小题,每小题3分,满分21分)11如图,小红作出了边长为1的第1个正A1B1C1,算出了正A1B1C1的面积,然后分别取A1B1C1三边的中点A2,B2,C2,作出了第2个正A2B2C2,算出了正A2B2C2的面积,用同样的方法,作出了第3个正A3B3C3,算出了正A3B3C3的面积,由此可得,第8个正A8B8C8的面积是_12若点M(k1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k1)x+k的图象不经过第 象限13如图,在ABC中,CA=CB,ACB=90,AB=2,点D为AB的中点,以点D为圆心作圆心角为90的扇形DEF,点C恰在弧EF上,
5、则图中阴影部分的面积为_14如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_15我们知道方程组的解是,现给出另一个方程组,它的解是_16如图,sinC,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则BDE周长的最小值为_178的算术平方根是_三、解答题(共7小题,满分69分)18(10分)已知:不等式2+x(1)求不等式的解;(2)若实数a满足a2,说明a是否是该不等式的解19(5分)为了了解某校学生对以下四个电视节目:A最
6、强大脑,B中国诗词大会,C朗读者,D出彩中国人的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为_;在扇形统计图中,A部分所占圆心角的度数为_;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱中国诗词大会的学生有多少名?20(8分)已知关于x的一元二次方程x2+(2m+3)x+m21有两根,求m的取值范围;若+1求m的值21(10分)某汽车专卖店销售A,B两种型号的汽车上周销售额为96万元:本周销售额为62万元,销售情况如下表:A型汽车
7、B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?22(10分)如图所示,点C为线段OB的中点,D为线段OA上一点连结AC、BD交于点P(问题引入)(1)如图1,若点P为AC的中点,求的值温馨提示:过点C作CEAO交BD于点E(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:(问题解决)(3)如图2,若AO=BO,AOBO,求tanBPC的值23(12分)如图,在ABC中,BAC90,ADBC于点D,BF平分AB
8、C交AD于点E,交AC于点F,求证:AEAF24(14分)如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、求二次函数的解析式;写出使一次函数值大于二次函数值的的取值范围;若直线与轴的交点为点,连结、,求的面积;参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:已知mn,根据平行线的性质可得3170.又因3是ABD的一个外角,可得32A.即A32703040.故答案选C.考点:平行线的性质.2、B【解析】根据,可得答案.【详解】解:,1的值在2和3之间.故选B.【点睛】本题考查了估算无理数的大小,先确
9、定的大小,在确定答案的范围.3、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数故选B【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用4、C【解析】根据左视图是从左面看到的图形求解即可.【详
10、解】从左面看,可以看到3个正方形,面积为3,故选:C【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.5、D【解析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.6、B【解析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等
11、腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t0时,S0,故C选项错误,B选项正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键7、B【解析】直接利用概率的意义分析得出答案【详解
12、】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选B【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键8、A【解析】分析:面动成体由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转9、A【解析】利用配方法,根据非负数的性质即可解决问题;【详解】解:x2+4y2+6x-4y+11=(x+3)2+(2y
13、-1)2+1,又(x+3)20,(2y-1)20,x2+4y2+6x-4y+111,故选:A【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.10、A【解析】由BD是ABC的角平分线,根据角平分线定义得到一对角ABD与CBD相等,然后由DCAB,根据两直线平行,得到一对内错角ABD与CDB相等,利用等量代换得到DBC=CDB,再根据等角对等边得到BC=CD,从而得到正确的选项【详解】BD是ABC的角平分线,ABD=CBD,又DCAB,ABD=CDB,CBD=CDB,BC=CD故选A【点睛】此题考查了等腰三角形的判定,以及平行线的性质学生在做题时,若遇到两直线平行,往
14、往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题这是一道较易的证明题,锻炼了学生的逻辑思维能力二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据相似三角形的性质,先求出正A2B2C2,正A3B3C3的面积,依此类推AnBnCn的面积是,从而求出第8个正A8B8C8的面积【详解】正A1B1C1的面积是,而A2B2C2与A1B1C1相似,并且相似比是1:2,则面积的比是,则正A2B2C2的面积是;因而正A3B3C3与正A2B2C2的面积的比也是,面积是()2;依此类推AnBnCn与An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1所以第8个正A8
15、B8C8的面积是()7=故答案为【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键12、一【解析】试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案点M(k1,k+1)关于y轴的对称点在第四象限内, 点M(k1,k+1)位于第三象限,k10且k+10, 解得:k1,y=(k1)x+k经过第二、三、四象限,不经过第一象限考点:一次函数的性质13、【解析】连接CD,根据题意可得DCEBDF,阴影部分的面积等于扇形的面积减去BCD的面积【详解】解:连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点
16、,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:CA=CB,ACB=90,点D为AB的中点,CD平分BCA,又DMBC,DNAC,DM=DN,GDH=MDN=90,GDM=HDN,则在DMG和DNH中, ,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=则阴影部分的面积是: 故答案为:【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键14、【解析】解:如图,作OHDK于H,连接OK,以AD为直径的半圆,正好与对边BC相切,AD=2CD根据折叠对称的性质,AD=2CDC=90,DAC
17、=30ODH=30DOH=60DOK=120扇形ODK的面积为ODH=OKH=30,OD=3cm,ODK的面积为半圆还露在外面的部分(阴影部分)的面积是:故答案为:15、【解析】观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.16、【解析】作BKCF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D,则,此时BDE的周长最小,作交CF于点F,可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在RtBGK中,可得BG
18、长,表示出BDE的周长等量代换可得其值.【详解】解:如图,作BKCF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D,则,此时BDE的周长最小,作交CF于点F.由作图知,四边形为平行四边形,由对称可知 ,即四边形为矩形在中, 在RtBGK中, BK=2,GK=6,BG2,BDE周长的最小值为BE+DE+BD=KD+DE+BD=DE+BD+GD=DE+BG=2+2故答案为:2+2【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.17、2.【解析】试题分析:
19、本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键依据算术平方根的定义回答即可由算术平方根的定义可知:8的算术平方根是,=2,8的算术平方根是2故答案为2考点:算术平方根.三、解答题(共7小题,满分69分)18、(1)x1;(2)a是不等式的解【解析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得(2)根据不等式的解的定义求解可得【详解】解:(1)去分母得:2x3(2+x),去括号得:2x6+3x,移项、合并同类项得:4x4,系数化为1得:x1(2)a2,不等式的解集为x1,而21,a是不等式的解【点睛】本题考查了解一元一次不等式,掌握解一
20、元一次不等式的步骤是解题的关键19、(1)120;(2) ;(3)答案见解析;(4)1650.【解析】(1)依据节目B的数据,即可得到调查的学生人数;(2)依据A部分的百分比,即可得到A部分所占圆心角的度数;(3)求得C部分的人数,即可将条形统计图补充完整;(4)依据喜爱中国诗词大会的学生所占的百分比,即可得到该校最喜爱中国诗词大会的学生数量【详解】,故答案为120;,故答案为;:,如图所示:,答:该校最喜爱中国诗词大会的学生有1650名【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答20、 (1)m;(2)m的值
21、为2【解析】(1)根据方程有两个相等的实数根可知1,求出m的取值范围即可;(2)根据根与系数的关系得出+与的值,代入代数式进行计算即可【详解】(1)由题意知,(2m+2)241m21,解得:m;(2)由根与系数的关系得:+(2m+2),m2,+1,(2m+2)+m21,解得:m11,m12,由(1)知m,所以m11应舍去,m的值为2【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,x1+x2,x1x2是解答此题的关键21、 (1) A型车售价为18万元,B型车售价为26万元. (2) 方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3
22、辆;方案二花费少.【解析】(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.【详解】解:(1)设A型车售价为x元,B型车售价为y元,则:解得:答:A型车售价为18万元,B型车售价为26万元.(2)设A型车购买m辆,则B型车购买(6m)辆, 13018m+26(6m) 140,:2m方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少【点睛】此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.22、(1);(2) 见解析;(3) 【解析】(1)过点C作CEOA交BD于点E,即可得BCEBOD,根据相似三角形的性
23、质可得,再证明ECPDAP,由此即可求得的值;(2)过点D作DFBO交AC于点F,即可得,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得A=APD=BPC,所以tanBPC=tanA=【详解】(1)如图1,过点C作CEOA交BD于点E,BCEBOD,=,又BC=BO,CE=DOCEOA,ECP=DAP,又EPC=DPA,PA=PC,ECPDAP,AD=CE=DO,即 =;(2)如图2,过点D作DFBO交AC于点F,则 =, =点C为OB的中点,BC=OC
24、,=;(3)如图2,=,由(2)可知=设AD=t,则BO=AO=4t,OD=3t,AOBO,即AOB=90,BD=5t,PD=t,PB=4t,PD=AD,A=APD=BPC,则tanBPC=tanA=【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点23、见解析【解析】根据角平分线的定义可得ABF=CBF,由已知条件可得ABF+AFB=CBF+BED=90,根据余角的性质可得AFB=BED,即可求得AFE=AEF,由等腰三角形的判定即可证得结论【详解】BF 平分ABC,ABF=CBF,BAC=90,ADBC,ABF+AFB=CBF+BED=
25、90,AFB=BED,AEF=BED,AFE=AEF,AE=AF【点睛】本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得AFB=BED是解题的关键24、(1);(2)或;(3)1.【解析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x的取值范围;(3)分别得出EO,AB的长,进而得出面积【详解】(1)二次函数与轴的交点为和设二次函数的解析式为:在抛物线上,3=a(0+3)(0-1),解得a=-1,所以解析式为:;(2)=x22x3,二次函数的对称轴为直线; 点、是二次函数图象上的一对对称点;使一次函数大于二次函数的的取值范围为或;(3)设直线BD:ymxn,代入B(1,0),D(2,3)得,解得:,故直线BD的解析式为:yx1,把x0代入得,y=3,所以E(0,1),OE1,又AB1,SADE13111【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键