《2023届吉林省长春市第八中学中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届吉林省长春市第八中学中考四模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公
2、顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( )ABCD2已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )ABCD3下列计算正确的是()A()28B+6C()00D(x2y)34当函数y=(x-1)2-2的函数值y随着x的增大而减小时,x的取值范围是()ABCDx为任意实数5如图,在ABC中,AB=5,AC=4,A=60,若边AC的垂直平分线DE交AB于点D,连接CD,则BDC的周长为()A8B9C5+D5+6如图,任意转动正六边形转盘一次,当转盘停
3、止转动时,指针指向大于3的数的概率是()ABCD7如图,直线ABCD,则下列结论正确的是()A1=2B3=4C1+3=180D3+4=1808下列汽车标志中,不是轴对称图形的是( )ABCD9在0,-2,5,-0.3中,负数的个数是( )A1B2C3D410二次函数y=ax+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x-1013y 33下列结论:(1)abc0(2)当x1时,y的值随x值的增大而减小;(3)16a+4b+c0(4)x=3是方程ax+(b-1)x+c=0的一个根;其中正确的个数为( )A4个B3个C2个D1个二、填空题(本大题共6个小题,每小题3分,共18分)1
4、1已知图中RtABC,B=90,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转 (0 ACP,所以在线段AB上不存在“好点”; (2)P为BA延长线上一个“好点”;ACP=MBP;PACPMB;即;M为PC中点,MP=2;. (3)第一种情况,P为线段AB上的“好点”,则ACP=MBA,找AP中点D,连结MD;M为CP中点;MD为CPA中位线;MD=2,MD/CA;DMP=ACP=MBA;DMPDBM;DM2=DPDB即4= DP(5DP);解得DP=1,DP=4(不在AB边上,舍去;)AP=2 第二种情况(1),P为线段AB延长线上的“好点”,则ACP=MBA,找
5、AP中点D,此时,D在线段AB上,如图,连结MD;M为CP中点;MD为CPA中位线;MD=2,MD/CA;DMP=ACP=MBA;DMPDBMDM2=DPDB即4= DP(5DA)= DP(5DP);解得DP=1(不在AB延长线上,舍去),DP=4AP=8;第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD; 此时,MBAMDBDMP=ACP,则这种情况不存在,舍去; 第三种情况,P为线段BA延长线上的“好点”,则ACP=MBA, PACPMB; BM垂直平分PC则BC=BP= ;综上所述,或或;【点睛】本题考查了信息迁移,三角形外角的性质,
6、直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.23、(1);(2)见解析;(3)【解析】(1) AB是O的直径,AB=AC,可得ADB=90,ADF=B,可求得tanADF的值;(2)连接OD,由已知条件证明ACOD,又DEAC,可得DE是O的切线;(3)由AFOD,可得AFEODE,可得后求得EF的长【详解】解:(1)AB是O的直径,ADB=90,AB=AC,BAD=CAD,DEAC,AFD=90,ADF=B,tanADF=tanB=;(2)连接OD,OD=OA,ODA=OAD,OAD=CAD,CAD=OD
7、A,ACOD,DEAC,ODDE,DE是O的切线;(3)设AD=x,则BD=2x,AB=x=10,x=2,AD=2,同理得:AF=2,DF=4,AFOD,AFEODE,=,EF=【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视24、(1)10;1;(2);(3)4分钟、9分钟或3分钟【解析】(1)根据速度=高度时间即可算出甲登山上升的速度;根据高度=速度时间即可算出乙在A地时距地面的高度b的值;(2)分0x2和x2两种情况,根据高度=初始高度+速度时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关
8、于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(10-100)20=10(米/分钟),b=312=1故答案为:10;1(2)当0x2时,y=3x;当x2时,y=1+103(x-2)=1x-1当y=1x-1=10时,x=2乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20)当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程