《2023届四川省眉山市东坡中学中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省眉山市东坡中学中考数学对点突破模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在RtABC中,C=90, BE平分ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )ABC6D42关于二次函数,下列说法正确的是( )A图像与轴
2、的交点坐标为B图像的对称轴在轴的右侧C当时,的值随值的增大而减小D的最小值为-33由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )A4B5C6D74某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下 成绩人数(频数)百分比(频率)050.2105150.42050.1根据表中已有的信息,下列结论正确的是()A共有40名同学参加知识竞赛B抽到的同学参加知识竞赛的平均成绩为10分C已知该校共有800名学生,若都参加竞赛,得0分的估计有100人D
3、抽到同学参加知识竞赛成绩的中位数为15分5浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )A1.018104B1.018105C10.18105D0.10181066等式组的解集在下列数轴上表示正确的是( )ABCD7下列各式正确的是( )ABCD8如图,ABC的内切圆O与AB,BC,CA分别相切于点D,E,F,且AD2,BC5,则ABC的周长为()A16B14C12D109已知二次函数y=ax2+bx+c(a0)的图象如图所示,有下列5个结论:abc0;b0;2c3bn(an+b)(n1),其中正确的结论有( )A2个B3个C4个D5个10如图,在三角形ABC中
4、,ACB=90,B=50,将此三角形绕点C沿顺时针方向旋转后得到三角形ABC,若点B恰好落在线段AB上,AC、AB交于点O,则COA的度数是()A50B60C70D80二、填空题(共7小题,每小题3分,满分21分)11如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若A=60,AB=4,则四边形BCNM的面积为_12将一副直角三角板如图放置,使含30角的三角板的短直角边和含45角的三角板的一条直角边重合,则1的度数为_度13抛物线y=x2+bx+c的部分图象如图所示,若y0,则x的取值范围是_14如图,直线yx2与反比例函数y的图象在第一象
5、限交于点P.若OP,则k的值为_ 15函数中,自变量的取值范围是_16使有意义的x的取值范围是_17若有意义,则x 的取值范围是 三、解答题(共7小题,满分69分)18(10分)解方程:19(5分)如图,在RtABC中,ACB=90,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿CAB以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作O(1)当时,求PCQ的面积;(2)设O的面积为s,求s与t的函数关系式;(3)当点Q在AB上运动时,O与RtABC的一边相切,求t的值20(8分)如图,在中,垂足为D,点E在B
6、C上,垂足为,试判断DG与BC的位置关系,并说明理由21(10分)解方程(1);(2)22(10分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高 线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命 题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”等腰三角形两腰上的中线相等 ;等腰三角形两底角的角平分线相等 ;有两条角平分线相等的三角形是等腰三角形 ;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例23(12分)在ABC中,AC
7、B45点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF(1)如果ABAC如图,且点D在线段BC上运动试判断线段CF与BD之间的位置关系,并证明你的结论(2)如果ABAC,如图,且点D在线段BC上运动(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC4,BC3,CDx,求线段CP的长(用含x的式子表示)24(14分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PECP交AB于点D,且PEPC,过点P作PFOP且PF
8、PO(点F在第一象限),连结FD、BE、BF,设OPt(1)直接写出点E的坐标(用含t的代数式表示): ;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】由角平分线的定义得到CBE=ABE,再根据线段的垂直平分线的性质得到EA=EB,则A=ABE,可得CBE=30,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC【详解】解:BE平分ABC,CBE=ABE,ED垂直平分A
9、B于D,EA=EB,A=ABE,CBE=30,BE=2EC,即AE=2EC,而AE+EC=AC=9,AE=1故选C2、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题详解:y=2x2+4x-1=2(x+1)2-3,当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答3、C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层
10、都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1故选C4、B【解析】根据频数频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.【详解】50.1=50(名),有50名同学参加知识竞赛,故选项A错误;成绩5分、15分、0分的同学分别有:500.2=10(名),500.4=20(名),50105205=10(名)抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;0分同学10人,其频率为0.2,800名学生,得0分的估计有8000.2=16
11、0(人),故选项C错误;第25、26名同学的成绩为10分、15分,抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误故选:B【点睛】本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.5、B【解析】.故选B.点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).6、B【解析】【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.【详解】,解不等式得,x-3,解不等式得,x2,在数轴上表示、的解集如图所示,故选B.【点睛】本题考查了解一元一次不等式组
12、,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示.7、A【解析】,则B错;,则C;,则D错,故选A8、B【解析】根据切线长定理进行求解即可.【详解】ABC的内切圆O与AB,BC,CA分别相切于点D,E,F,AFAD2,BDBE,CECF,BE+CEBC5,BD+CFBC5,ABC的周长2+2+5+514,故选B【点睛】本题考查了三角形的
13、内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.9、B【解析】观察图象可知a0,b0,c0,由此即可判定;当x=1时,y=ab+c由此可判定;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,由此可判定;当x=3时函数值小于0,即y=9a+3b+c0,且x= =1,可得a=,代入y=9a+3b+c0即可判定;当x=1时,y的值最大此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定.【详解】由图象可知:a0,b0,c0,abc0,故此选项错误;当x=1时,y=ab+c0,即ba+c,故此选项错误;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,故此选
14、项正确;当x=3时函数值小于0,y=9a+3b+c0,且x=1即a=,代入得9()+3b+c0,得2c3b,故此选项正确;当x=1时,y的值最大此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+can2+bn+c,故a+ban2+bn,即a+bn(an+b),故此选项正确正确故选B【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键10、B【解析】试题分析:在三角形ABC中,ACB=90,B=50,A=180ACBB=40由旋转的性质可知:BC=BC,B=BBC=50又BBC=A+ACB=40+ACB,ACB=
15、10,COA=AOB=OBC+ACB=B+ACB=60故选B考点:旋转的性质二、填空题(共7小题,每小题3分,满分21分)11、3【解析】如图,连接BD首先证明BCD是等边三角形,推出SEBC=SDBC=42=4,再证明EMNEBC,可得=()2=,推出SEMN=,由此即可解决问题.【详解】解:如图,连接BD四边形ABCD是菱形,AB=BC=CD=AD=4,A=BCD=60,ADBC,BCD是等边三角形,SEBC=SDBC=42=4,EM=MB,EN=NC,MNBC,MN=BC,EMNEBC,=()2=,SEMN=,S阴=4-=3,故答案为3【点睛】本题考查相似三角形的判定和性质、三角形的中位
16、线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12、1【解析】根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解【详解】360,445,15180341故答案为:1【点睛】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180,是解题的关键13、3x1【解析】试题分析:根据抛物线的对称轴为x=1,一个交点为(1,0),可推出另一交点为(3,0),结合图象求出y0时,x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=1,已知一个交点为(1,0),根据对称性,则另一交点为(3,0),所以y0时,x的取值范围是3x1故答案为3
17、x1考点:二次函数的图象14、1【解析】设点P(m,m+2),OP=, =,解得m1=1,m2=1(不合题意舍去),点P(1,1),1=,解得k=1点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键15、x1【解析】解:有意义,x-10,x1;故答案是:x116、【解析】二次根式有意义的条件【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须17、x【解析】略三、解答题(共7小题,满分69分)18、x=,x=2【解析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】,则2x(x+1)=3(1x),2x2+5x3=0,(
18、2x1)(x+3)=0,解得:x1=,x2=3,检验:当x=,x=2时,2(x+1)(1x)均不等于0,故x=,x=2都是原方程的解【点睛】本题考查解分式方程的能力(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化19、(1);(2);(3)t的值为或1或【解析】(1)先根据t的值计算CQ和CP的长,由图形可知PCQ是直角三角形,根据三角形面积公式可得结论;(2)分两种情况:当Q在边AC上运动时,当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;(3)分别当O与BC相切时
19、、当O与AB相切时,当O与AC相切时三种情况分类讨论即可确定答案【详解】(1)当t=时,CQ=4t=4=2,即此时Q与A重合,CP=t=,ACB=90,SPCQ=CQPC=2=;(2)分两种情况:当Q在边AC上运动时,0t2,如图1,由题意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,S=;当Q在边AB上运动时,2t4如图2,设O与AB的另一个交点为D,连接PD,CP=t,AC+AQ=4t,PB=BCPC=2t,BQ=2+44t=64t,PQ为O的直径,PDQ=90,RtACB中,AC=2cm,AB=4cm,B=30,RtPDB中,PD=PB=
20、,BD=,QD=BQBD=64t=3,PQ=,S=;(3)分三种情况:当O与AC相切时,如图3,设切点为E,连接OE,过Q作QFAC于F,OEAC,AQ=4t2,RtAFQ中,AQF=30,AF=2t1,FQ=(2t1),FQOEPC,OQ=OP,EF=CE,FQ+PC=2OE=PQ,(2t1)+t=,解得:t=或(舍);当O与BC相切时,如图4,此时PQBC,BQ=64t,PB=2t,cos30=,t=1;当O与BA相切时,如图5,此时PQBA,BQ=64t,PB=2t,cos30=,t=,综上所述,t的值为或1或【点睛】本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识
21、,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想20、DGBC,理由见解析【解析】由垂线的性质得出CDEF,由平行线的性质得出2=DCE,再由已知条件得出1=DCE,即可得出结论【详解】解:DGBC,理由如下:CDAB,EFAB,CDEF,2=DCE,1=2,1=DCE,DGBC【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明1=DCE是解题关键21、(1),;(2),【解析】(1)利用公式法求解可得;(2)利用因式分解法求解可得【详解】(1)解:,;(2)解:原方程化为:,因式分解得:,整理得:,或,【点睛】本题主要考查解一元二次
22、方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键22、(1)真;真;真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.【解析】(1)根据命题的真假判断即可;(2)根据全等三角形的判定和性质进行证明即可【详解】(1)等腰三角形两腰上的中线相等是真命题;等腰三角形两底角的角平分线相等是真命题;有两条角平分线相等的三角形是等腰三角形是真命题;故答案为真;真;真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;已知:如图,ABC中,BD,CE分别是AC,BC边上的中线,且BDCE,求证:
23、ABC是等腰三角形;证明:连接DE,过点D作DFEC,交BC的延长线于点F,BD,CE分别是AC,BC边上的中线,DE是ABC的中位线,DEBC,DFEC,四边形DECF是平行四边形,ECDF,BDCE,DFBD,DBFDFB,DFEC,FECB,ECBDBC,在DBC与ECB中,DBCECB,EBDC,ABAC,ABC是等腰三角形【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知和求证,最后写出证明过程23、(1)CF与BD位置关系是垂直,理由见解析;(2)ABAC时,CFBD的结论成立,理由见解析;(3)见解析【解析】(1)由A
24、CB=15,AB=AC,得ABD=ACB=15;可得BAC=90,由正方形ADEF,可得DAF=90,AD=AF,DAF=DAC+CAF;BAC=BAD+DAC;得CAF=BAD可证DABFAC(SAS),得ACF=ABD=15,得BCF=ACB+ACF=90即CFBD(2)过点A作AGAC交BC于点G,可得出AC=AG,易证:GADCAF,所以ACF=AGD=15,BCF=ACB+ACF=90即CFBD(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=1 ,BC=3,CD=x,求线段CP的长考虑点D的位置,分两种情况去解答点D在线段BC上运动,已知BCA=15,可求
25、出AQ=CQ=1即DQ=1-x,易证AQDDCP,再根据相似三角形的性质求解问题点D在线段BC延长线上运动时,由BCA=15,可求出AQ=CQ=1,则DQ=1+x过A作AQBC交CB延长线于点Q,则AGDACF,得CFBD,由AQDDCP,得再根据相似三角形的性质求解问题【详解】(1)CF与BD位置关系是垂直;证明如下:AB=AC,ACB=15,ABC=15由正方形ADEF得AD=AF,DAF=BAC=90,DAB=FAC,DABFAC(SAS),ACF=ABDBCF=ACB+ACF=90即CFBD(2)ABAC时,CFBD的结论成立理由是:过点A作GAAC交BC于点G,ACB=15,AGD=
26、15,AC=AG,同理可证:GADCAFACF=AGD=15,BCF=ACB+ACF=90,即CFBD(3)过点A作AQBC交CB的延长线于点Q,点D在线段BC上运动时,BCA=15,可求出AQ=CQ=1DQ=1x,AQDDCP,点D在线段BC延长线上运动时,BCA=15,AQ=CQ=1,DQ=1+x过A作AQBC,Q=FAD=90,CAF=CCD=90,ACF=CCD,ADQ=AFC,则AQDACFCFBD,AQDDCP,【点睛】综合性题型,解题关键是灵活运用所学全等、相似、正方形等知识点.24、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析【解析】(1)
27、如图所示,过点E作EGx轴于点G,则COP=PGE=90,由题意知CO=AB=6、OA=BC=4、OP=t,PECP、PFOP,CPE=FPG=90,即CPF+FPE=FPE+EPG,CPF=EPG,又COOG、FPOG,COFP,CPF=PCO,PCO=EPG,在PCO和EPG中,PCO=EPG,POC=EGP,PC=EP,PCOEPG(AAS),CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)DAEG,PADPGE,AD=t(4t),BD=ABAD=6t(4t)=t2t+6,EGx轴、FPx轴,且EG=FP,四边形EGPF为矩形,EFBD,EF=PG,S四边形BEDF=SBDF+SBDE=BDEF=(t2t+6)6=(t2)2+16,当t=2时,S有最小值是16;(3)假设FBD为直角,则点F在直线BC上,PF=OPAB,点F不可能在BC上,即FBD不可能为直角;假设FDB为直角,则点D在EF上,点D在矩形的对角线PE上,点D不可能在EF上,即FDB不可能为直角;假设BFD为直角且FB=FD,则FBD=FDB=45,如图2,作FHBD于点H,则FH=PA,即4t=6t,方程无解,假设不成立,即BDF不可能是等腰直角三角形