2023届四川省自贡市富顺中考联考数学试题含解析.doc

上传人:茅**** 文档编号:87791612 上传时间:2023-04-17 格式:DOC 页数:18 大小:878KB
返回 下载 相关 举报
2023届四川省自贡市富顺中考联考数学试题含解析.doc_第1页
第1页 / 共18页
2023届四川省自贡市富顺中考联考数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届四川省自贡市富顺中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省自贡市富顺中考联考数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在下面的四个几何体中,左视图与主视图不相同的几何体是()ABCD2下列运算正确的是()Aa6a3=a2B3a22a=6a3C(3a)2=3a2D2x2x2=13的值是()A1B1C3D34等腰三角形三边长分别为,且是关于的一元二次方程的两根,则的值为( )A9B10C9或10D8或105小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋

3、,商店经理的这一决定应用的统计量是()A平均数B加权平均数C众数D中位数6的相反数是A4BCD7如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为A6B8C10D128如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且ABCGEF;弯道为以点O为圆心的一段弧,且,所对的圆心角均为90甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示结合题目信息

4、,下列说法错误的是()A甲车在立交桥上共行驶8sB从F口出比从G口出多行驶40mC甲车从F口出,乙车从G口出D立交桥总长为150m9“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米数据56亿用科学记数法可表示为()A56108B5.6108C5.6109D0.561010102018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )A42,41B41,4

5、2C41,41D42,4511当ab0时,yax2与yax+b的图象大致是()ABCD12如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP/AB,则AB的长等于_14关于的一元二次方程有两个相等的实数根,则的值等于_15某小区购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰

6、树的单价.设银杏树的单价为x元,可列方程为_.162018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为_17与是位似图形,且对应面积比为4:9,则与的位似比为_18如图,四边形ACDF是正方形,和都是直角,且点三点共线,则阴影部分的面积是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两

7、个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少(直接写出方案)20(6分) ( 1)计算: 4sin31+(2115)1(3)2(2)先化简,再求值:1,其中x、y满足|x2|+(2xy3)2=121(6分)已知抛物线的开口向上顶点为P(1)若P点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当1x2时,求y的取值范围(用含a的代数式表示)(3)若a1,且当0x1时,抛物线上的点到x轴距离的最大值为6,求b的值2

8、2(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0a200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案23(8分)如图,在ABC中,以AB为直径的O交BC于点D,交CA的延长线于

9、点E,过点D作DHAC于点H,且DH是O的切线,连接DE交AB于点F(1)求证:DC=DE;(2)若AE=1,求O的半径24(10分)如图,RtABC中,C=90,O是RtABC的外接圆,过点C作O的切线交BA的延长线于点E,BDCE于点D,连接DO交BC于点M.(1)求证:BC平分DBA;(2)若,求的值25(10分)阅读材料,解答下列问题:神奇的等式当ab时,一般来说会有a2+ba+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:()2+=+,()2+=+,()2+=+()2,()2+=+()2,(1)特例验证:请再写出一个具有上述特征的等式: ;(2)猜想结论:用n(n为正整数

10、)表示分数的分母,上述等式可表示为: ;(3)证明推广:(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;等式()2+=+()2(m,n为任意实数,且n0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由26(12分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标建筑面积7200平方米,为我国西北第一高阁秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量测量方案如下:如图,李梅在小亮和“石鼓阁”之

11、间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米已知ABBM,EDBM,GFBM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度27(12分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均

12、在格点上,P为线段MN上的一个动点(1)MN的长等于_,(2)当点P在线段MN上运动,且使PA2PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是

13、圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2、B【解析】A、根据同底数幂的除法法则计算;B、根据同底数幂的乘法法则计算;C、根据积的乘方法则进行计算;D、根据合并同类项法则进行计算.【详解】解:A、a6a3=a3,故原题错误;B、3a22a=6a3,故原题正确;C、(3a)2=9a2,故原题错误;D、2x2x2=x2,故原题错误;故选B【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.3、B【解析】直接利用立方根的定义化简得出答案【

14、详解】因为(-1)3=-1,=1故选:B【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键,4、B【解析】由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意所以n只能为1故选B5、C【解析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数【详解】解:根据商店经理统

15、计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数故选:C【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用6、A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案【详解】-1的相反数为1,则1的绝对值是1故选A【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键7、C【解析】连接AD,由于ABC是等腰三角形,点D是BC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再

16、再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论【详解】连接AD,ABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=4AD=16,解得AD=8,EF是线段AC的垂直平分线,点C关于直线EF的对称点为点A,AD的长为CM+MD的最小值,CDM的周长最短=(CM+MD)+CD=AD+BC=8+4=8+2=1故选C【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键8、C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.B.

17、3段弧的长度都是:从F口出比从G口出多行驶40m,正确.C.分析图2可知甲车从G口出,乙车从F口出,故错误.D.立交桥总长为:故正确.故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键.9、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于56亿有10位,所以可以确定n1011【详解】56亿561085.6101,故选C【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键10、C【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只

18、一个【详解】从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数所以本题这组数据的中位数是 1,众数是 1 故选C【点睛】考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数11、D【解析】ab0,a、b同号当a0,b0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a0,b0时,抛物线开口向下,顶点在原点,

19、一次函数过二、三、四象限,B图象符合要求故选B12、B【解析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B二、填空题:(本大题共6个小题,每小题4分,共24分)13、 【解析】设CD=AB=a,利用勾股定理可得到RtCDE中,DE2=CE2-CD2=1-2a2,RtDEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据DEPDAB,即可得到,即,可得,即可得到AB的长等于【详解】如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,由折叠可得,CE=BC,BP=EP,CE2=1-a2,RtCDE中,DE2=CE2-CD

20、2=1-2a2,PEAB,A=90,PED=90,RtDEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,PE=a2,PEAB,DEPDAB,即,即a2+a-1=0,解得(舍去),AB的长等于AB=.故答案为.14、【解析】分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.详解:由题意得:= , ,即a(a-1)=1, a-1=,故答案为-3.点睛:本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac:当0, 方程有两个不相等的实数根;当0, 方程没有实数根;当=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.15、【解析】

21、根据银杏树的单价为x元,则玉兰树的单价为1.5x元,根据“某小区购买了银杏树和玉兰树共1棵”列出方程即可【详解】设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意,得:1故答案为:1【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键16、3.3081【解析】正确用科学计数法表示即可.【详解】解:33080=3.3081【点睛】科学记数法的表示形式为的形式, 其中1|a|10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n

22、是负数.17、2:1【解析】由相似三角形的面积比等于相似比的平方,即可求得与的位似比【详解】解与是位似图形,且对应面积比为4:9,与的相似比为2:1,故答案为:2:1【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方18、8【解析】【分析】证明AECFBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】四边形ACDF是正方形,AC=FA,CAF=90,CAE+FAB=90,CEA=90,CAE+ACE=90,ACE=FAB,又AEC=FBA=90,AECFBA,CE=AB=4,S阴影=8,故答案为

23、8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)这种篮球的标价为每个50元;(2)见解析【解析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x元,依题意,得,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球

24、的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100500.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50500.9-300)=3900元,单独在B超市购买:100500.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45500.9-300=1725元,两次购买,每次各买45个,需要17252=3450元,其余10个在B超市购买,需要10500.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:

25、在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20、 (1)-7;(2) ,.【解析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【详解】(1)原式=34+19=7;(2)原式=1

26、 =1 = =;|x2|+(2xy3)2=1,解得:x=2,y=1,当x=2,y=1时,原式=.故答案为(1)-7;(2);.【点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.21、(1);(2)14ay45a;(3)b2或10.【解析】(1)将P(4,-1)代入,可求出解析式(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得(3)观察图象可得,当0x1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三

27、种情况,再根据对称轴在不同位置进行讨论即可【详解】解:(1)由此抛物线顶点为P(4,-1),所以ya(x-4)2-1ax28ax16a1,即16a13,解得a=, b=-8a=-2所以抛物线解析式为:;(2)由此抛物线经过点C(4,1),所以 一116a4b3,即b4a1因为抛物线的开口向上,则有 其对称轴为直线,而 所以当1x2时,y随着x的增大而减小当x1时,y=a+(4a+1)+3=4+5a当x2时,y=4a-2(4a+1)+3=1-4a所以当1x2时,14ay45a;(3)当a1时,抛物线的解析式为yx2bx3抛物线的对称轴为直线由抛物线图象可知,仅当x0,x1或x时,抛物线上的点可能

28、离x轴最远分别代入可得,当x0时,y=3当x=1时,yb4当x=-时,y=-+3当一0,即b0时,3yb+4,由b46解得b2当0-1时,即一2b0时,b2120,抛物线与x轴无公共点由b46解得b2(舍去);当 ,即b2时,b4y3,由b46解得b10综上,b2或10【点睛】本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同22、 (1) =100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每

29、台利润A电脑数量+B型电脑每台利润B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100x),即y=(a100)x+50000,分三种情况讨论,当0a100时,y随x的增大而减小,a=100时,y=50000,当100m200时,a1000,y随x的增大而增大,分别进行求解【详解】(1)根据题意,y=400x+500(100x)=100x+50000;(2)100x2x,x,y=100x+50000中k=1000,y随x的增大而减小,x为正

30、数,x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100x),即y=(a100)x+50000,33x60,当0a100时,y随x的增大而减小,当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大a=100时,a100=0,y=50000,即商店购进A型电脑数量满足33x60的整数时,均获得最大利润;当100a200时,a1000,y随x的增大而增大,当x=60时,y取得最大值即商店购进60台A型电脑和40台B型电脑的销售利润最大【点

31、睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.23、 (1)见解析;(2).【解析】(1)连接OD,由DHAC,DH是O的切线,然后由平行线的判定与性质可证C=ODB,由圆周角定理可得OBD=DEC,进而C=DEC,可证结论成立;(2)证明OFDAFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接OD,由题意得:DHAC,由且DH是O的切线,ODH=DHA=90,ODH=DHA=90,ODCA,C=ODB,OD=OB,OBD=ODB,OBD=C,OBD=DEC,C=DEC,DC=DE;(2)

32、解:由(1)可知:ODAC,ODF=AEF,OFD=AFE,OFDAFE,AE=1,OD=,O的半径为【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.24、 (1)证明见解析;(2) 【解析】分析:(1)如下图,连接OC,由已知易得OCDE,结合BDDE可得OCBD,从而可得1=2,结合由OB=OC所得的1=3,即可得到2=3,从而可得BC平分DBA;(2)由OCBD可得EBDEOC和DBMOCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,

33、由此即可得到.详解:(1)证明:连结OC,DE与O相切于点C,OCDE.BDDE,OCBD. . 1=2,OB=OC,1=3,2=3,即BC平分DBA. . (2)OCBD,EBDEOC,DBMOCM,. ,设EA=2k,AO=3k,OC=OA=OB=3k.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OCDE结合BDDE得到OCBD是解答第1小题的关键;(2)解答第2小题的关键是由OCBD得到EBDEOC和DBMOCM这样利用相似三角形的性质结合已知条件即可求得所求值了.25、(1)()1+=+()1;(1)()1+=+()1;(3)成立,理由见解析;成立,理由见解析【解析】(1)根

34、据题目中的等式列出相同特征的等式即可;(1)根据题意找出等式特征并用n表达即可;(3)先后证明左右两边的等式的结果,如果结果相同则成立;先证明等式是否成立,如果成立再根据等式的特征写出m,n至少有一个为无理数的等式.【详解】解:(1)具有上述特征的等式可以是()1+=+()1,故答案为()1+=+()1;(1)上述等式可表示为()1+=+()1,故答案为()1+=+()1;(3)等式成立,证明:左边=()1+=+=,右边=+()1=,左边=右边,等式成立;此等式也成立,例如:()1+=+()1【点睛】本题考查了规律的知识点,解题的关键是根据题目中的等式找出其特征.26、 “石鼓阁”的高AB的长

35、度为56m【解析】根据题意得ABC=EDC=90,ABM=GFH=90,再根据反射定律可知:ACB=ECD,则ABCEDC,根据相似三角形的性质可得=,再根据AHB=GHF,可证ABHGFH,同理得=,代入数值计算即可得出结论.【详解】由题意可得:ABC=EDC=90,ABM=GFH=90,由反射定律可知:ACB=ECD,则ABCEDC,=,即=,AHB=GHF,ABHGFH,=,即=,联立,解得:AB=56,答:“石鼓阁”的高AB的长度为56m【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.27、(1);(2)见解析.【解析】(1)根据勾股定理即可得到结论;(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果【详解】(1);(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P【点睛】本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁