《2023届内蒙古呼和浩特市中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届内蒙古呼和浩特市中考数学最后一模试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列几何体中,主视图和俯视图都为矩形的是()ABCD2下列运算中,正确的是()A(a3)2=a5B(x)2x=xCa3(a)2=a5D(2x2)3=8x63计算-5+1的结果为( )A-6B
2、-4C4D64如图所示几何体的主视图是( )ABCD5如图是由7个同样大小的正方体摆成的几何体将正方体移走后,所得几何体()A主视图不变,左视图不变B左视图改变,俯视图改变C主视图改变,俯视图改变D俯视图不变,左视图改变6不解方程,判别方程2x23x3的根的情况()A有两个相等的实数根B有两个不相等的实数根C有一个实数根D无实数根7某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A25本B20本C15本D10本8实数5.22的绝对值是()A5.22B5.22C5.22D9二次函数y=(x1)2+5
3、,当mxn且mn0时,y的最小值为2m,最大值为2n,则m+n的值为( )AB2CD10正比例函数y2kx的图象如图所示,则y(k2)x1k的图象大致是()ABCD11如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若ADE125,则DBC的度数为( )A125B75C65D5512天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A-=20B-=20C-=20D二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在直角坐标系中,
4、点A,B分别在x轴,y轴上,点A的坐标为(1,0),ABO=30,线段PQ的端点P从点O出发,沿OBA的边按OBAO运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为_14如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,按此作法进行去,点Bn的纵坐标为 (n为正整数)15如图,线段 AB 是O 的直径,弦 CDAB,AB=8,CAB=22.5,则 CD的长等于_16不等式组的
5、整数解是_17如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,则的值为_18如图,AOB是直角三角形,AOB90,OB2OA,点A在反比例函数y的图象上若点B在反比例函数y的图象上,则k的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,ABC中,C90,ACBC,ABC的平分线BD交AC于点D,DEAB于点E(1)依题意补全图形;(2)猜想AE与CD的数量关系,并证明20(6分)如图,在RtABC中,C=90,以BC为直径的O交AB于点D,切线DE交AC于点E.(1)求证:A=ADE;(2)若AD
6、=8,DE=5,求BC的长21(6分)如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF求证:C=90;当BC=3,sinA=时,求AF的长22(8分)声音在空气中传播的速度y(m/s)是气温x()的一次函数,下表列出了一组不同气温的音速:气温x()05101520音速y(m/s)331334337340343(1)求y与x之间的函数关系式:(2)气温x=23时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?23(8分)计算:22+|14sin60|24(10分)如图,在中,点D是BC上任意一点,将线段AD绕点A逆时针方向
7、旋转,得到线段AE,连结EC依题意补全图形;求的度数;若,将射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路25(10分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.26(12分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为W元(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?27(12
8、分)已知,抛物线yx2x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BMFM,在直线AC下方的抛物线上是否存在点P,使SACP4,若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OMON,求证:直线DE必经过一定点参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】A、主视图为等腰三角形,俯视图为圆
9、以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图,俯视图均为圆,故C选项错误;D、主视图为矩形,俯视图为三角形,故D选项错误.故选:B.2、D【解析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可【详解】(a3)2=a6,选项A不符合题意;(-x)2x=x,选项B不符合题意;a3(-a)2=a5,选项C不符合题意;(-2x2)3=-8x6,选项D符合题意故选D【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握3、B【解析】根据有理数的加
10、法法则计算即可【详解】解:-5+1=-(5-1)=-1故选B【点睛】本题考查了有理数的加法4、C【解析】从正面看几何体,确定出主视图即可【详解】解:几何体的主视图为 故选C【点睛】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图5、A【解析】分别得到将正方体移走前后的三视图,依此即可作出判断【详解】将正方体移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。将正方体移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。
11、将正方体移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.【点睛】考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.6、B【解析】一元二次方程的根的情况与根的判别式有关,方程有两个不相等的实数根,故选B7、C【解析】设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可【详解】解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买
12、了(40x)本,乙种笔记本的单价是(y+3)元,根据题意,得:,解得:,答:甲种笔记本买了25本,乙种笔记本买了15本故选C【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键8、A【解析】根据绝对值的性质进行解答即可【详解】实数5.1的绝对值是5.1故选A【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键9、D【解析】由mxn和mn0知m0,n0,据此得最小值为1m为负数,最大值为1n为正数将最大值为1n分两种情况,顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只
13、能由x=m求出【详解】解:二次函数y=(x1)1+5的大致图象如下:当m0xn1时,当x=m时y取最小值,即1m=(m1)1+5, 解得:m=1当x=n时y取最大值,即1n=(n1)1+5, 解得:n=1或n=1(均不合题意,舍去);当m0x1n时,当x=m时y取最小值,即1m=(m1)1+5, 解得:m=1当x=1时y取最大值,即1n=(11)1+5, 解得:n=, 或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=,m=,m0,此种情形不合题意,所以m+n=1+=10、B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,2k0,得k0,k20,函数
14、y=(k2)x+1k图象经过一、二、四象限,故选B.11、D【解析】延长CB,根据平行线的性质求得1的度数,则DBC即可求得【详解】延长CB,延长CB,ADCB,1=ADE=145,DBC=1801=180125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.12、C【解析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1【详解】原价买可买瓶,经过还价,可买瓶方程可表示为:=1故选C【点睛】考查了由实际问题抽象出分式方程列方程解应用题的关键步骤在于找相等关系本题要注意讨价前后商品的单价的变化二、填空题:(
15、本大题共6个小题,每小题4分,共24分)13、4【解析】首先根据题意正确画出从OBA运动一周的图形,分四种情况进行计算:点P从OB时,路程是线段PQ的长;当点P从BC时,点Q从O运动到Q,计算OQ的长就是运动的路程;点P从CA时,点Q由Q向左运动,路程为QQ;点P从AO时,点Q运动的路程就是点P运动的路程;最后相加即可【详解】在RtAOB中,ABO=30,AO=1,AB=2,BO=当点P从OB时,如图1、图2所示,点Q运动的路程为,当点P从BC时,如图3所示,这时QCAB,则ACQ=90ABO=30BAO=60OQD=9060=30AQ=2AC,又CQ=,AQ=2OQ=21=1,则点Q运动的路
16、程为QO=1,当点P从CA时,如图3所示,点Q运动的路程为QQ=2,当点P从AO时,点Q运动的路程为AO=1,点Q运动的总路程为:+1+2+1=4故答案为4.考点:解直角三角形14、【解析】寻找规律: 由直线y=x的性质可知,B2,B3,Bn是直线y=x上的点,OA1B1,OA2B2,OAnBn都是等腰直角三角形,且A2B2=OA2=OB1=OA1;A3B3=OA3=OB2=OA2=OA1;A4B4=OA4=OB3=OA3=OA1;又点A1坐标为(1,0),OA1=1,即点Bn的纵坐标为15、4 【解析】连接 OC,如图所示,由直径 AB 垂直于 CD,利用垂径定理得到 E 为CD 的中点,即
17、 CE=DE,由 OA=OC,利用等边对等角得到一对角相等,确定出三角形 COE 为等腰直角三角形,求出 CE 的长,进而得出 CD【详解】连接 OC,如图所示:AB 是O 的直径,弦 CDAB,OC= AB=4,OA=OC,A=OCA=22.5,COE 为AOC 的外角,COE=45,COE 为等腰直角三角形,CE= OC=,CD=2CE=,故答案为.【点睛】考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键16、1、0、1【解析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案【详解】,解不等式得:,解不等式得:,不等式组的解
18、集为,不等式组的整数解为-1,0,1.故答案为:-1,0,1.【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.17、【解析】过点B作BFOC于点F,易证SOAE=S四边形DEBF=,SOAB=S四边形DABF,因为,所以,又因为ADBF,所以SBCFSACD,可得BF:AD=2:5,因为SOAD=SOBF,所以ODAD =OFBF,即BF:AD=2:5= OD:OF,易证:SOEDSOBF,SOED:SOBF=4:25,SOED:S四边形EDFB=4:21,所以SOED= ,SOBF= SOED+ S四边形EDFB=+=, 即可得解:k=2 SOBF=
19、.【详解】解:过点B作BFOC于点F,由反比例函数的比例系数|k|的意义可知:SOAD=SOBF,SOAD- SOED =SOBF一SOED,即SOAE=S四边形DEBF=,SOA B=S四边形DABF,ADBFSBCFSACD,又,BF:AD=2:5,SOAD=SOBF,ODAD =OFBFBF:AD=2:5= OD:OF易证:SOEDSOBF,SOED:SOBF=4:25,SOED:S四边形EDFB=4:21S四边形EDFB=,SOED= ,SOBF= SOED+ S四边形EDFB=+=, k=2 SOBF=.故答案为.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运
20、用相似三角形的判定定理和性质定理.18、2【解析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作ACx轴,BDx轴,分别于C,D根据条件得到ACOODB,得到:=1,然后用待定系数法即可【详解】过点A,B作ACx轴,BDx轴,分别于C,D设点A的坐标是(m,n),则AC=n,OC=mAOB=90,AOC+BOD=90DBO+BOD=90,DBO=AOCBDO=ACO=90,BDOOCA,OB=1OA,BD=1m,OD=1n因为点A在反比例函数y=的图象上,mn=1点B在反比例函数y=的图象上,B点的坐标是(-1n,1m)k=-1n1m=-4mn=-2故答案为-2【点睛】本题考查了反比例
21、函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)见解析;(2)见解析.【解析】(1)根据题意画出图形即可;(2)利用等腰三角形的性质得A45则ADEA45,所以AEDE,再根据角平分线性质得CDDE,从而得到AECD【详解】解:(1)如图:(2)AE与 CD的数量关系为AECD证明:C90,ACBC,A45DEAB,ADEA45AEDE,BD平分ABC,CDDE,AECD【点睛】此题考查等腰三角形的性质,角平分线的性质,解题关键在于根据
22、题意作辅助线.20、(1)见解析(2)7.5【解析】(1)只要证明A+B=90,ADE+B=90即可解决问题;(2)首先证明AC=2DE=10,在RtADC中,求得DC=6,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,DE是切线,ODE=90,ADE+BDO=90,ACB=90,A+B=90,OD=OB,B=BDO,A=ADE;(2)连接CD,A=ADEAE=DE,BC是O的直径,ACB=90,EC是O的切线,ED=EC,AE=EC,DE=5,AC=2DE=
23、10,在RtADC中,DC=,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,x2+62=(x+8)2-102,解得x=4.5,BC=【点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.21、(1)见解析(2)【解析】(1)连接OE,BE,因为DE=EF,所以=,从而易证OEB=DBE,所以OEBC,从可证明BCAC;(2)设O的半径为r,则AO=5r,在RtAOE中,sinA=从而可求出r的值【详解】解:(1)连接OE,BE,DE=EF,=OBE=DBEOE=OB,OEB=OBEOEB=DBE,OEBCO与边AC相切于点E,OEACBC
24、ACC=90(2)在ABC,C=90,BC=3,sinA=,AB=5,设O的半径为r,则AO=5r,在RtAOE中,sinA= 【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识22、 (1) y=x+331;(2)1724m.【解析】(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.【详解】解:(1)设y=kx+b, k=,y=x+331.(2)当x=23时,y= x23+331=344.85344.8=1724.此人与烟花燃放地相距约1724
25、m.【点睛】此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.23、-1【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案【详解】解:原式1【点睛】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键24、(1)见解析;(2)90;(3)解题思路见解析.【解析】(1)将线段AD绕点A逆时针方向旋转90,得到线段AE,连结EC(2)先判定ABDACE,即可得到,再根据,即可得出;(3)连接DE,由于ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在RtADH中,由,AD=
26、1可求AH、DH的长;由DF、DH的长可求HF的长;在RtAHF中,由AH和HF,利用勾股定理可求AF的长【详解】解:如图,线段AD绕点A逆时针方向旋转,得到线段AE,在和中,中,;连接DE,由于为等腰直角三角形,所以可求;由,可求的度数和的度数,从而可知DF的长;过点A作于点H,在中,由,可求AH、DH的长;由DF、DH的长可求HF的长;在中,由AH和HF,利用勾股定理可求AF的长故答案为(1)见解析;(2)90;(3)解题思路见解析.【点睛】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角25、;2.【解析】先将后面的两个式子进
27、行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.26、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.【解析】(1)直接利用每件利润销量=总利润进而得出等式求出答案;(2)直接利用每件利润销量=总利润进而得出函数关系式,利用二次函数增减性求出答案【详解】(1)根据题意得:(x20)(2x+1)=150,解得:x1=
28、25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x20)(2x+1)=2(x30)2+200,a=2,抛物线开口向下,当x30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元当x=28时,W最大=2(2830)2+200=192(元)销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键27、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使SACP4,见解析;(3)见解析
29、【解析】(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC下方轴x上一点,使SACH4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,再由得出,进而求出,同理可得,再根据,即可得出结论【详解】(1)针对于抛物线,令x0,则,令y0,则,解得,x1或x3,综上所述:,;(2)由(1)知,BMFM,直线AC的解析式为:,联立抛物线解析式得:,解得:或,如图1,设H是直线AC下方轴x上一点,AHa且SACH4,解得:,过H作lAC,直线l的解析式为,联立抛物线解析式,解得,即:在直线AC下方的抛物线上不存在点P,使;(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,设,直线DE的解析式为,联立直线DE的解析式与抛物线解析式联立,得,DGx轴,DGOM,即,同理可得,即,直线DE的解析式为,直线DE必经过一定点【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.