2023届四川省凉山州西昌市达标名校中考联考数学试卷含解析.doc

上传人:茅**** 文档编号:87791471 上传时间:2023-04-17 格式:DOC 页数:19 大小:859.50KB
返回 下载 相关 举报
2023届四川省凉山州西昌市达标名校中考联考数学试卷含解析.doc_第1页
第1页 / 共19页
2023届四川省凉山州西昌市达标名校中考联考数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届四川省凉山州西昌市达标名校中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省凉山州西昌市达标名校中考联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A13.75106 B13.75105 C1.375108 D1.3751092已知关于x的一元二次方程x2+mx

2、+n0的两个实数根分别为x12,x24,则m+n的值是()A10B10C6D23如图,矩形ABCD中,E为DC的中点,AD:AB:2,CP:BP1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O下列结论:EP平分CEB;PBEF;PFEF2;EFEP4AOPO其中正确的是()ABCD4在RtABC中,C90,如果AC4,BC3,那么A的正切值为()ABCD5若函数y=kxb的图象如图所示,则关于x的不等式k(x3)b0的解集为()Ax2Bx2Cx5Dx56tan60的值是( )ABCD7如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )ABCD8如图

3、所示的几何体,它的左视图是( )ABCD9如图,将ABC沿着点B到C的方向平移到DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A42B96C84D4810如果与互补,与互余,则与的关系是( )ABCD以上都不对二、填空题(本大题共6个小题,每小题3分,共18分)11关于x的方程kx2(2k+1)x+k+2=0有实数根,则k的取值范围是_12如图,在中,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动连接,线段的长随的变化而变化,当最大时,_.当的边

4、与坐标轴平行时,_.13若a+b3,ab2,则a2+b2_14已知直线mn,将一块含有30角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若1=20,则2=_度15计算:2a(2b)=_16如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为_.三、解答题(共8题,共72分)17(8分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(2,0)与动点P(0,t)的直线MP记作l.(1)

5、若l的解析式为y2x4,判断此时点A是否在直线l上,并说明理由;(2)当直线l与AD边有公共点时,求t的取值范围18(8分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,ABBD,BAD18,C在BD上,BC0.5m根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度小刚和小亮谁说得对?请你判断并计算出正确的限制高度(结果精确到0.1m,参考数据:sin180.31,cos180.95,tan180.325)19(8分)如图,直线y=x

6、与双曲线y=(k0,x0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k0,x0)交于点B(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值20(8分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米(1)求x的取值范围;(2)若CPN=60,求x的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y

7、,求y关于x的关系式(结果保留)21(8分)我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定22(10分)已知关于x的一元二次方程3x26x+1k=0有实数根,k为负整数求k的值;如果这个方程有两个整数根,求出它的根23(12分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x

8、轴交于点C求双曲线解析式;点P在x轴上,如果ACP的面积为5,求点P的坐标.24如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58、45从F测得C、A的仰角分别为22、70求建筑物AB的高度(精确到0.1m)(参考数据:tan220.40,tan581.60,tan702.1)参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】13.75亿=1.375109.故答案选D.【点睛】本题考查的知识

9、点是科学记数法,解题的关键是熟练的掌握科学记数法.2、D【解析】根据“一元二次方程x2+mx+n0的两个实数根分别为x12,x24”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案【详解】解:根据题意得:x1+x2m2+4,解得:m6,x1x2n24,解得:n8,m+n6+82,故选D【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键3、B【解析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出EBC的度数和CEP的度数,则CEP=BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、E

10、F的值,从而可以求出结论【详解】解:设AD=x,AB=2x四边形ABCD是矩形AD=BC,CD=AB,D=C=ABC=90DCABBC=x,CD=2xCP:BP=1:2CP=x,BP=xE为DC的中点,CE=CD=x,tanCEP=,tanEBC=CEP=30,EBC=30CEB=60PEB=30CEP=PEBEP平分CEB,故正确;DCAB,CEP=F=30,F=EBP=30,F=BEF=30,EBPEFB,BEBF=EFBPF=BEF,BE=BFPBEF,故正确F=30,PF=2PB=x,过点E作EGAF于G,EGF=90,EF=2EG=2xPFEF=x2x=8x22AD2=2(x)2=6

11、x2,PFEF2AD2,故错误.在RtECP中,CEP=30,EP=2PC=xtanPAB=PAB=30APB=60AOB=90在RtAOB和RtPOB中,由勾股定理得,AO=x,PO=x4AOPO=4xx=4x2又EFEP=2xx=4x2EFEP=4AOPO故正确故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键4、A【解析】根据锐角三角函数的定义求出即可.【详解】解:在RtABC中,C=90,AC=4,BC=3, tanA=.故选A.【点睛】本题考查了锐角

12、三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.5、C【解析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x3)b0中进行求解即可【详解】解:一次函数y=kxb经过点(2,0),2kb=0,b=2k函数值y随x的增大而减小,则k0;解关于k(x3)b0,移项得:kx3k+b,即kx1k;两边同时除以k,因为k0,因而解集是x1故选C【点睛】本题考查一次函数与一元一次不等式6、A【解析】根据特殊角三角函数值,可得答案【详解】tan60=故选:A【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键

13、7、B【解析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.8、A【解析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键9、D【解析】由平移的性质知,BE=6,DE=AB=10,OE=DEDO=104=6,S四边形ODFC=S梯形ABEO

14、=(AB+OE)BE=(10+6)6=1故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.10、C【解析】根据1与2互补,2与1互余,先把1、1都用2来表示,再进行运算【详解】1+2=1801=180-2又2+1=901=90-21-1=90,即1=90+1故选C【点睛】此题主要记住互为余角的两个角的和为90,互为补角的两个角的和为180度二、填空题(本大题共6个小题,每小题3分,共18分)11、k【解析】分k=1及k1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k1时

15、,由1即可得出关于k的一元一次不等式,解之即可得出k的取值范围综上此题得解【详解】当k=1时,原方程为-x+2=1,解得:x=2,k=1符合题意;当k1时,有=-(2k+1)2-4k(k+2)1,解得:k且k1综上:k的取值范围是k故答案为:k【点睛】本题考查了根的判别式以及一元二次方程的定义,分k=1及k1两种情况考虑是解题的关键12、4 【解析】(1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;(2)根据等腰三角形的性质求出CD,分ACy轴、BCx轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【详解】(1),当O,D,

16、C共线时,OC取最大值,此时ODAB.,AOB为等腰直角三角形, ;(2)BC=AC,CD为AB边的高,ADC=90,BD=DA=AB=4,CD=3,当ACy轴时,ABO=CAB,RtABORtCAD,即,解得,t=,当BCx轴时,BAO=CBD,RtABORtBCD,即,解得,t= ,则当t=或时,ABC的边与坐标轴平行故答案为t=或【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键13、1【解析】根据a2+b2=(a+b)2-2ab,代入计算即可【详解】a+b3,ab2,a2+b2(a+b)

17、22ab941故答案为:1【点睛】本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式14、1【解析】根据平行线的性质即可得到2=ABC+1,据此进行计算即可【详解】解:直线mn,2=ABC+1=30+20=1,故答案为:1【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键15、4ab【解析】根据单项式与单项式的乘法解答即可【详解】2a(2b)=4ab故答案为4ab【点睛】本题考查了单项式的乘法,关键是根据单项式的乘法法则解答16、.【解析】设正六边形ABCDEF的边长为4a,则AA1AF1FF12a求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCD

18、EF()2,计算即可;【详解】设正六边形ABCDEF的边长为4a,则AA1AF1FF12a,作A1MFA交FA的延长线于M,在RtAMA1中,MAA160,MA1A30,AMAA1a,MA1AA1cos30=a,FM5a,在RtA1FM中,FA1,F1FLAFA1,F1LFA1AF120,F1FLA1FA,FLa,F1La,根据对称性可知:GA1F1La,GL2aaa,S六边形GHIJKI:S六边形ABCDEF()2,故答案为:【点睛】本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题三、解答

19、题(共8题,共72分)17、 (1)点A在直线l上,理由见解析;(2)t4.【解析】(1)由题意得点B、A坐标,把点A的横坐标x1代入解析式y2x4得出y的值,即可得出点A在直线l上;(2)当直线l经过点D时,设l的解析式代入数值解出即可【详解】(1)此时点A在直线l上BCAB2,点O为BC中点,点B(1,0),A(1,2)把点A的横坐标x1代入解析式y2x4,得y2,等于点A的纵坐标2,此时点A在直线l上(2)由题意可得,点D(1,2),及点M(2,0),当直线l经过点D时,设l的解析式为ykxt(k0),解得由(1)知,当直线l经过点A时,t4.当直线l与AD边有公共点时,t的取值范围是t

20、4.【点睛】本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.18、小亮说的对,CE为2.6m【解析】先根据CEAE,判断出CE为高,再根据解直角三角形的知识解答【详解】解:在ABD中,ABD90,BAD18,BA10m,tanBAD,BD10tan18,CDBDBC10tan180.52.7(m),在ABD中,CDE90BAD72,CEED,sinCDE,CEsinCDECDsin722.72.6(m),2.6m2.7m,且CEAE,小亮说的对答:小亮说的对,CE为2.6m【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化

21、为数学问题.19、(1)k=b2+4b;(2)【解析】试题分析:(1)分别求出点B的坐标,即可解答(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作ADx轴,BEx轴,CFBE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)将直线y=向上平移4个单位长度后,与y轴交于点C,平移后直线的解析式为y=+4,点B在直线y=+4上,B(b,b+4),点B在双曲线y=上,B(b,),令b+4=得(2)分别过点A、B作ADx轴,BEx轴,CFBE于点F,设A(3x,x),OA=3BC,BCOA,CFx轴,C

22、F=OD,点A、B在双曲线y=上,3bb=,解得b=1,k=311=考点:反比例函数综合题20、(1)0x10;(1)x=6;(3)y=x1+54x【解析】(1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;(1)根据等边三角形的判定和性质即可求解;(3)连接MN、EF,分别交AC于B、H此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可【详解】(1)BC=1分米,AC=CN+PN=11分米,AB=ACBC=10分米,x的取值范围是:0x10;(1)CN=PN,CPN=60,PCN是等边三角形,CP=6分米,AP=ACPC=6分

23、米,即当CPN=60时,x=6;(3)连接MN、EF,分别交AC于B、H,PM=PN=CM=CN,四边形PNCM是菱形,MN与PC互相垂直平分,AC是ECF的平分线,PB=6-,在RtMBP中,PM=6分米,MB1=PM1PB1=61(6x)1=6xx1CE=CF,AC是ECF的平分线,EH=HF,EFAC,ECH=MCB,EHC=MBC=90,CMBCEH,=,EH1=9MB1=9(6xx1),y=EH1=9(6xx1),即y=x1+54x【点睛】此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用21、(1

24、)平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些两个队的平均数都相同,初中部的中位数高,在平均数相同的情况下中位数高的初中部成绩好些(3),因此,初中代表队选手成绩较为稳定(1)根据成绩表加以计算可补全统计表根据平均数、众数、中位数的统计意义回答(2)根据平均数和中位数的统计意义分析得出即可(3)分别求出初中、高中部的方差比较即可22、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据

25、方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法23、(1);(2)(,0)或

26、【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或24、建筑物AB的高度约为5.9米【解析】在CED中,得出DE,在CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;【详解】在RtCED中,CED=58,tan58=,DE= ,在RtCFD中,CFD=22,tan22= ,DF= ,EF=DFDE=,同理:EF=BEBF= ,解得:AB5.9(米),答:建筑物AB的高度约为5.9米【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁