2023届四川省宜宾市翠屏区中学中考数学押题试卷含解析.doc

上传人:茅**** 文档编号:87791006 上传时间:2023-04-17 格式:DOC 页数:15 大小:647KB
返回 下载 相关 举报
2023届四川省宜宾市翠屏区中学中考数学押题试卷含解析.doc_第1页
第1页 / 共15页
2023届四川省宜宾市翠屏区中学中考数学押题试卷含解析.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2023届四川省宜宾市翠屏区中学中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省宜宾市翠屏区中学中考数学押题试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,与1是内错角的是( )A2 B3C4 D52一元二次方程的根的情况是A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断3已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,

2、若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是()ABCD4一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()ABCD5为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()ABCD6如图,ABC中AB两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC,且ABC与ABC的位似比为2:1设点B的对应点B的横坐标是a

3、,则点B的横坐标是()ABCD7计算aa2的结果是()Aa Ba2 C2a2 Da38下列运算中,正确的是()A(ab2)2=a2b4 Ba2+a2=2a4 Ca2a3=a6 Da6a3=a29下列运算正确的是( )A4x+5y=9xyB(m)3m7=m10C(x3y)5=x8y5Da12a8=a410如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D二、填空题(共7小题,每小题3分,满分21分)11将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_,这两条直线间的距离为_12_.13如图,已知

4、点A是一次函数yx(x0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y (x0)的图象过点B,C,若OAB的面积为5,则ABC的面积是_14如图,一名滑雪运动员沿着倾斜角为34的斜坡,从A滑行至B,已知AB500米,则这名滑雪运动员的高度下降了_米(参考数据:sin340.56,cos340.83,tan340.67)15如图,已知圆锥的母线 SA 的长为 4,底面半径 OA 的长为 2,则圆锥的侧面积等于 16某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份

5、用电200千瓦时,交电费105元,则a=_17计算:(2a3)2=_三、解答题(共7小题,满分69分)18(10分)在平面直角坐标系中,抛物线y(xh)2+k的对称轴是直线x1若抛物线与x轴交于原点,求k的值;当1x0时,抛物线与x轴有且只有一个公共点,求k的取值范围19(5分)如图,在平行四边形ABCD中,ABBC利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= 20(8分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,

6、问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)21(10分)如图,AB是O的直径,点C是AB延长线上的点,CD与O相切于点D,连结BD、AD(1)求证;BDCA(2)若C45,O的半径为1,直接写出AC的长22(10分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程在科研所到宿舍楼之间修一条高科技的道路;对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为yax+b(0x3)当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设

7、修路的费用与x2成正比,且比例系数为m万元,配套工程费w防辐射费+修路费(1)当科研所到宿舍楼的距离x3km时,防辐射费y_万元,a_,b_;(2)若m90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?23(12分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨千米”表示每吨粮食运

8、送1千米所需人民币)路程(千米)运费(元/吨千米)甲库乙库甲库乙库A库20151212B库2520108若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):从甲库运往B库粮食 吨;从乙库运往A库粮食 吨;从乙库运往B库粮食 吨;(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?24(14分)如图,在ABC中,ACB=90,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE(1)说明四边形ACEF是平行四边形;(2)当B满足什么条件时,四边形ACEF是菱

9、形,并说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由内错角定义选B.2、A【解析】把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.【详解】 方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.3、D【解析】首先利用已知条件根据边角边可以证明APDAEB;由可得BEP=90,故BE不垂直于AE过点B作BFAE延长线于F,由得AEB=135所以EFB=45,所以EFB是等腰Rt,故B到直线AE距离为BF=,故是错误的;利用全等三角形的性质和对顶角相等即可判定

10、说法正确;由APDAEB,可知SAPD+SAPB=SAEB+SAPB,然后利用已知条件计算即可判定;连接BD,根据三角形的面积公式得到SBPD=PDBE=,所以SABD=SAPD+SAPB+SBPD=2+,由此即可判定【详解】由边角边定理易知APDAEB,故正确;由APDAEB得,AEP=APE=45,从而APD=AEB=135,所以BEP=90,过B作BFAE,交AE的延长线于F,则BF的长是点B到直线AE的距离,在AEP中,由勾股定理得PE=,在BEP中,PB= ,PE=,由勾股定理得:BE=,PAE=PEB=EFB=90,AE=AP,AEP=45,BEF=180-45-90=45,EBF

11、=45,EF=BF,在EFB中,由勾股定理得:EF=BF=,故是错误的;因为APDAEB,所以ADP=ABE,而对顶角相等,所以是正确的; 由APDAEB,PD=BE=,可知SAPD+SAPB=SAEB+SAPB=SAEP+SBEP=+,因此是错误的;连接BD,则SBPD=PDBE= ,所以SABD=SAPD+SAPB+SBPD=2+,所以S正方形ABCD=2SABD=4+ 综上可知,正确的有故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题4、D【解析】画出树状图得出所有等可能的情况数,找出恰好是

12、两个红球的情况数,即可求出所求的概率【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:故选:D【点睛】此题考查了列表法与树状图法,用到的知识点为:概率所求情况数与总情况数之比5、C【解析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误故选:C【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解

13、和把握.6、D【解析】设点B的横坐标为x,然后表示出BC、BC的横坐标的距离,再根据位似变换的概念列式计算【详解】设点B的横坐标为x,则B、C间的横坐标的长度为1x,B、C间的横坐标的长度为a+1,ABC放大到原来的2倍得到ABC,2(1x)a+1,解得x(a+3),故选:D【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键7、D【解析】aa2= a3.故选D.8、A【解析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+

14、a2=2a2,故此选项错误;C、a2a3=a5,故此选项错误;D、a6a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键9、D【解析】各式计算得到结果,即可作出判断【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12a8=a4,正确;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键10、D【解析】解:设ABP中AB边上的高是hSPAB=S矩形ABCD, ABh=ABAD,h=AD=2,动点P在与AB平行且与AB的距离

15、是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离在RtABE中,AB=5,AE=2+2=4,BE= =,即PA+PB的最小值为故选D二、填空题(共7小题,每小题3分,满分21分)11、y=x+1 【解析】已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1再利用等面积法求得这两条直线间的距离即可【详解】直线 y=x 沿y轴向上平移1个单位长度,所得直线的函数关系式为:y=x+1 A(0,1),B(1,0),AB=1,过点 O 作 OFAB 于点 F,则ABOF=OAOB,OF=,即这两条直线间

16、的距离为 故答案为y=x+1,【点睛】本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k0)的图象为直线,当直线平移时 k 不变,当向上平移m个单位,则平移后直线的解析式为 y=kx+b+m12、1【解析】先将二次根式化为最简,然后再进行二次根式的乘法运算即可【详解】解:原式=2=1故答案为1【点睛】本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键13、 【解析】如图,过C作CDy轴于D,交AB于E设AB=2a,则BE=AE=CE=a,再设A(x,x),则B(x,x+2a)、C(x+a,x+a),再由B、C在反比例函数的图象上可得x(x+2a)=(x+a)(x

17、+a),解得x=3a,由OAB的面积为5求得ax=5,即可得a2=,根据SABC=ABCE即可求解.【详解】如图,过C作CDy轴于D,交AB于EABx轴,CDAB,ABC是等腰直角三角形,BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),B、C在反比例函数的图象上,x(x+2a)=(x+a)(x+a),解得x=3a,SOAB=ABDE=2ax=5,ax=5,3a2=5,a2=,SABC=ABCE=2aa=a2=故答案为:【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合

18、反比例函数的关系式是关键14、1【解析】试题解析:在RtABC中,sin34=AC=ABsin34=5000.56=1米.故答案为1.15、8【解析】圆锥的侧面积就等于母线长乘底面周长的一半依此公式计算即可【详解】侧面积=442=8故答案为8【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系16、150【解析】根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元;根据等量关系列出方程,解出a的值即可.【详解】0.5200=100105,a200.由题意得:0.5a+0.6(200-a)=105,解得:a=150

19、.故答案为:150【点睛】此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.17、4a1【解析】根据积的乘方运算法则进行运算即可.【详解】原式 故答案为【点睛】考查积的乘方,掌握运算法则是解题的关键.三、解答题(共7小题,满分69分)18、(1)k1;(2)当4k1时,抛物线与x轴有且只有一个公共点【解析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当1x2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)抛物线y(xh)2+k的对称

20、轴是直线x1,h1,把原点坐标代入y(x1)2+k,得,(21)2+k2,解得k1;(2)抛物线y(x1)2+k与x轴有公共点,对于方程(x1)2+k2,判别式b24ac4k2,k2当x1时,y4+k;当x2时,y1+k,抛物线的对称轴为x1,且当1x2时,抛物线与x轴有且只有一个公共点,4+k2且1+k2,解得4k1,综上,当4k1时,抛物线与x轴有且只有一个公共点【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.19、(1)见解析;(2)1【解析】试题分析:根据角平分线上的点到角的两边距离相等知作出A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD

21、BC,再根据角平分线的性质和平行线的性质得到BAE=BEA,再根据等腰三角形的性质和线段的和差关系即可求解试题解析:(1)如图所示:E点即为所求(2)四边形ABCD是平行四边形,AB=CD=5,ADBC,DAE=AEB,AE是A的平分线,DAE=BAE,BAE=BEA,BE=BA=5,CE=BCBE=1考点:作图复杂作图;平行四边形的性质20、至少涨到每股6.1元时才能卖出.【解析】根据关系式:总售价-两次交易费总成本+1000列出不等式求解即可【详解】解:设涨到每股x元时卖出,根据题意得1000x-(5000+1000x)0.5%5000+1000, 解这个不等式得x,即x6.1 答:至少涨

22、到每股6.1元时才能卖出【点睛】本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费总成本+1000”列出不等关系式21、(1)详见解析;(2)1+【解析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结如图,与相切于点D,是的直径,即(2)解:在中, .【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.22、 (1)0,360,101;(2)当距离为2公里时,配套工程费用最少;(3)0m1【解析】(1)当x1时,y720,当x3时,y0,将x、y代入y

23、ax+b,即可求解;(2)根据题目:配套工程费w防辐射费+修路费分0x3和x3时讨论.当0x3时,配套工程费W90x2360x+101,当x3时,W90x2,分别求最小值即可;(3)0x3,Wmx2360x+101,(m0),其对称轴x,然后讨论:x=3时和x3时两种情况m取值即可求解【详解】解:(1)当x1时,y720,当x3时,y0,将x、y代入yax+b,解得:a360,b101,故答案为0,360,101;(2)当0x3时,配套工程费W90x2360x+101,当x2时,Wmin720;当x3时,W90x2,W随x最大而最大,当x3时,Wmin810720,当距离为2公里时,配套工程费

24、用最少;(3)0x3,Wmx2360x+101,(m0),其对称轴x,当x3时,即:m60,Wminm()2360()+101,Wmin675,解得:60m1;当x3时,即m60,当x3时,Wmin9m675,解得:0m60,故:0m1【点睛】本题考查了二次函数的性质在实际生活中的应用最值问题常利函数的增减性来解答23、(1)(100x);(1x);(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元【解析】分析:()根据题意解答即可; ()弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用

25、一次函数的增减性确定“最省的总运费”详解:()设从甲库运往A库粮食x吨; 从甲库运往B库粮食(100x)吨; 从乙库运往A库粮食(1x)吨; 从乙库运往B库粮食(20+x)吨; 故答案为(100x);(1x);(20+x) ()依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100x)吨,乙库运往A库(1x)吨,乙库运到B库(20+x)吨 则,解得:0x1 从甲库运往A库粮食x吨时,总运费为: y=1220x+1025(100x)+1215(1x)+820120(100x) =30x+39000; 从乙库运往A库粮食(1x)吨,0x1,此时100x0,y=30x+39000(0x1) 300

26、,y随x的增大而减小,当x=1时,y取最小值,最小值是2答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”24、(1)说明见解析;(2)当B=30时,四边形ACEF是菱形理由见解析【解析】试题分析:(1)证明AECEAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当B=30时,四边形ACEF是菱形根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断(1)证明:由题意知FDC=DCA=90,EFCA,FEA=CAE,AF=CE=AE,F=FEA=CAE=ECA在AEC和EAF中,EAFAEC(AAS),EF=CA,四边形ACEF是平行四边形(2)解:当B=30时,四边形ACEF是菱形理由如下:B=30,ACB=90,AC=AB,DE垂直平分BC,BDE=90BDE=ACBEDAC又BD=DCDE是ABC的中位线,E是AB的中点,BE=CE=AE,又AE=CE,AE=CE=AB,又AC=AB,AC=CE,四边形ACEF是菱形考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁