《2023届山东省金乡县中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省金乡县中考数学全真模拟试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1的化简结果为A3BCD92二次函数的图象如图所示,则下列各式中错误的是( )Aabc0Ba+b+c0Ca+cbD2a+b=03的倒数是( )ABCD4关于x的一元二次方程x24x+k=0有
2、两个相等的实数根,则k的值是( )A2B2C4D45如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B C D6已知二次函数y=(x+m)2n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )ABCD7数据4,8,4,6,3的众数和平均数分别是( )A5,4B8,5C6,5D4,58如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()ABCD9在下列条件中,能够判定一个四边形是平行四边形的是( )A一组对边平行,另一组对边相等B一组对边相等,一组对角相等C一组对边平行,一条对角线平分另一
3、条对角线D一组对边相等,一条对角线平分另一条对角线10已知函数yax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c40的根的情况是A有两个相等的实数根B有两个异号的实数根C有两个不相等的实数根D没有实数根11下列计算正确的是()Aa2a3a6B(a2)3a6Ca2+a2a3Da6a2a312计算1+2+22+23+22010的结果是( )A220111B22011+1CD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABCD中,AB=6cm,AD=9cm,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,BG=cm,则EFCF的长为 cm14
4、如图,中,平分,与相交于点,则的长等于_.15若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_16使得关于x的分式方程的解为负整数,且使得关于x的不等式组有且仅有5个整数解的所有k的和为_17若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120的扇形,则该圆锥的侧面面积为_cm(结果保留)18已知:如图,ABC内接于O,且半径OCAB,点D在半径OB的延长线上,且A=BCD=30,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)从2017年1月1日起,我国驾驶证
5、考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值学员培训时段培训学时培训总费用小明普通时段206000元高峰时段5节假日时段15小华普通时段305400元高峰时段2节假日时段8(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元求y与x之间的函
6、数关系式,并确定自变量x的取值范围;小陈如何选择培训时段,才能使得本次培训的总费用最低?20(6分)解方程21(6分)如图,在大楼AB正前方有一斜坡CD,坡角DCE=30,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60,在斜坡上的D处测得楼顶B的仰角为45,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.22(8分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?
7、(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率23(8分)如图,图是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图),人观看屏幕最舒适此时测得BAO15,AO30 cm,OBC45,求AB的长度(结果精确到0.1 cm)24(10分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O有直角MPN,使直角顶点P与点O重合,直角边PM
8、、PN分别与OA、OB重合,然后逆时针旋转MPN,旋转角为(090),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G(1)求四边形OEBF的面积;(2)求证:OGBD=EF2;(3)在旋转过程中,当BEF与COF的面积之和最大时,求AE的长25(10分)某市旅游部门统计了今年“五一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:(1)求今年“五一”放假期间该市这四个景点共接待游客的总人数;(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;(3)根据预测,明年“五一”放假期间将有90万
9、游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?26(12分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分钟)10103503020850(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天如果小王四月份生产甲种产品a件(a为正整数)用含a的代数式表示小王四月份生产乙种产品的件数;已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围27(12分)先化简,再求值:,其中a是方程a
10、(a+1)0的解参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:根据二次根式的计算化简可得:故选A考点:二次根式的化简2、B【解析】根据二次函数的图象与性质逐一判断即可【详解】解:由图象可知抛物线开口向上,对称轴为,故D正确,又抛物线与y轴交于y轴的负半轴,故A正确;当x=1时,即,故B错误;当x=-1时,即,故C正确,故答案为:B【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质3、C【解析】由互为倒数的两数之积为1,即可求解【详解】,的倒数是
11、.故选C4、C【解析】对于一元二次方程a+bx+c=0,当=-4ac=0时,方程有两个相等的实数根.即16-4k=0,解得:k=4.考点:一元二次方程根的判别式5、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.6、C【解析】试题解析:观察二次函数图象可知: 一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.故选D.7、D【解析】根据众数的定义找出出现次
12、数最多的数,再根据平均数的计算公式求出平均数即可【详解】4出现了2次,出现的次数最多,众数是4;这组数据的平均数是:(4+8+4+6+3)5=5;故选D8、D【解析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:几何体的左视图是:故选D.9、C【解析】A、错误这个四边形有可能是等腰梯形B、错误不满足三角形全等的条件,无法证明相等的一组对边平行C、正确可以利用三角形全等证明平行的一组对边相等故是平行四边形D、错误不满足三角形全等的条件,无法证明相等的一组对边平行故选C10、A【解析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c40的根的情况即是判断函数yax2+b
13、x+c的图象与直线y4交点的情况【详解】函数的顶点的纵坐标为4,直线y4与抛物线只有一个交点,方程ax2+bx+c40有两个相等的实数根,故选A【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.11、B【解析】试题解析:A.故错误.B.正确.C.不是同类项,不能合并,故错误.D. 故选B.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.12、A【解析】可设其和为S,则2S=2+22+23+24+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+22010则2S=2+22+23+22010+22011
14、-得S=22011-1故选A.【点睛】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、5【解析】分析:AF是BAD的平分线,BAF=FADABCD中,ABDC,FAD =AEBBAF=AEBBAE是等腰三角形,即BE=AB=6cm同理可证CFE也是等腰三角形,且BAECFEBC= AD=9cm,CE=CF=3cmBAE和CFE的相似比是2:1BGAE, BG=cm,由勾股定理得EG=2cmAE=4cmEF=2cmEFCF=5cm14、3【解析】如图,延长CE、DE,分别交AB于G、H,由BAD=ADE=60可得三
15、角形ADH是等边三角形,根据等腰直角三角形的性质可知CGAB,可求出AG的长,进而可得GH的长,根据含30角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,BAD=ADE=60,ADH是等边三角形,DH=AD=AH=5,DHA=60,AC=BC,CE平分ACB,ACB=90,AB=8,AG=AB=4,CGAB,GH=AH=AG=5-4=1,DHA=60,GEH=30,EH=2GH=2DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30角的直角三角形的性质,熟记30角所对
16、的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.15、1【解析】联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值【详解】联立得:,2+,得:10x=20,解得:x=2,将x=2代入,得:1-y=1,解得:y=0,则,将x=2、y=0代入,得:,解得:,则mn=1,故答案为1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值16、12.1【解析】依据分式方程=1的解为负整数,即可得到k,k1,再根据不等式组有1个整数解,即可得到0k4,进而得出k的值,从而可得符合题意的所有k的和【详解】解分式方程=1,可得x=1-2k,分
17、式方程=1的解为负整数,1-2k0,k,又x-1,1-2k-1,k1,解不等式组,可得,不等式组有1个整数解,12,解得0k4,k4且k1,k的值为1.1或2或2.1或3或3.1,符合题意的所有k的和为12.1,故答案为12.1【点睛】本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况17、12【解析】根据圆锥的侧面展开图是扇形可得,该圆锥的侧面面积为:12,故答案为12.18、2【解析】试题分析:根据题意可得:O=2A=60,则OBC为等边三角形,根据BCD=30可得:OCD=90,OC=AC=2,则CD=,则三、解答题:(本大题共9个小题,共78分,
18、解答应写出文字说明、证明过程或演算步骤19、(1)120,180;(2)y=-60x+7200,0x;x=时,y有最小值,此时y最小=-60+7200=6400(元)【解析】(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解; (2)根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围; 根据一次函数的性质结合自变量的取值范围即可求解【详解】(1)由题意,得,解得,故a,b的值分别是120,180;(2)由题意,得y=120x+180(40-x),化简得y=-60x+7200,普通时段的培训学时不会超过
19、其他两个时段总学时的,x(40-x),解得x,又x0,0x;y=-60x+7200,k=-600,y随x的增大而减小,x取最大值时,y有最小值,0x;x=时,y有最小值,此时y最小=-60+7200=6400(元)【点睛】本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键20、原分式方程无解.【解析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x1)(x+2),得x(x+2)(x1)(x+2)3即:x2+2xx2x+23整理,得x1检验:当x1时,(x1)(x+2)0,原方程无解【点睛】本题考查解分式方程
20、,解题的关键是明确解放式方程的计算方法21、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DFAB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角ABC中,BAC=90,BCA=60,AB=60米,则AC=(米)答:坡底C点到大楼距离AC的值是20米(2)过点D作DFAB于点F,则四边形AEDF为矩形,AF=DE,DF=AE.设CD=x米,在RtCDE中,DE=x米,CE=x米在RtBDF中,BDF=45
21、,BF=DF=AB-AF=60-x(米)DF=AE=AC+CE,20+x=60-x解得:x=80-120(米)故斜坡CD的长度为(80-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键22、(1)150;(2)详见解析;(3).【解析】(1)用A类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解【详解】解:(1)1510%=150,所以共调查了150名学生;(2)
22、喜欢“立定跳远”学生的人数为150156030=45,喜欢“立定跳远”的学生所占百分比为120%40%10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,所以刚好抽到不同性别学生的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图23、37【解析】试题分析:过点作交于点构造直角三角形,在中,计算出,在中, 计算出.试题解析:如图所示:过点作交于点在中, 又在中, 答:的长度为 24、(1);(2)详见解析
23、;(3)AE=【解析】(1)由四边形ABCD是正方形,直角MPN,易证得BOECOF(ASA),则可证得S四边形OEBF=SBOC=S正方形ABCD;(2)易证得OEGOBE,然后由相似三角形的对应边成比例,证得OGOB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;(3)首先设AE=x,则BE=CF=1x,BF=x,继而表示出BEF与COF的面积之和,然后利用二次函数的最值问题,求得AE的长【详解】(1)四边形ABCD是正方形,OB=OC,OBE=OCF=45,BOC=90,BOF+COF=90,EOF=90,BOF+COE=90,BOE=COF,在BOE和COF中, BO
24、ECOF(ASA),S四边形OEBF=SBOE+SBOE=SBOE+SCOF=SBOC=S正方形ABCD (2)证明:EOG=BOE,OEG=OBE=45,OEGOBE,OE:OB=OG:OE,OGOB=OE2, OGBD=EF2;(3)如图,过点O作OHBC,BC=1, 设AE=x,则BE=CF=1x,BF=x,SBEF+SCOF=BEBF+CFOH 当时,SBEF+SCOF最大;即在旋转过程中,当BEF与COF的面积之和最大时, 【点睛】本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题注意掌握转化思想
25、的应用是解此题的关键25、(1)60人;(2)144,补全图形见解析;(3)15万人.【解析】(1)用B景点人数除以其所占百分比可得;(2)用360乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;(3)用总人数乘以样本中D景点人数所占比例【详解】(1)今年“五一”放假期间该市这四个景点共接待游客的总人数为1830%=60万人;(2)扇形统计图中景点A所对应的圆心角的度数是360=144,C景点人数为60(24+18+10)=8万人,补全图形如下:(3)估计选择去景点D旅游的人数为90=15(万人)【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图
26、,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小26、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)600-; a1【解析】(1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;(2)根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;根据“小王四月份的工资不少于1500元”即可列出不等式.【详解】(1)设生产一件甲种产品需
27、x分钟,生产一件乙种产品需y分钟,由题意得:,解这个方程组得:,答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,一小时生产甲产品4件,生产乙产品3件,所以小王四月份生产乙种产品的件数:3(258)=600-;依题意:1.5a+2.8(600-)1500,16800.6a1500,解得:a1.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.27、【解析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【详解】解:原式=a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0,a=-1,将a=-1代入得,原式=【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.