2023届宁波市重点中学中考数学五模试卷含解析.doc

上传人:茅**** 文档编号:87790399 上传时间:2023-04-17 格式:DOC 页数:21 大小:1.30MB
返回 下载 相关 举报
2023届宁波市重点中学中考数学五模试卷含解析.doc_第1页
第1页 / 共21页
2023届宁波市重点中学中考数学五模试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2023届宁波市重点中学中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届宁波市重点中学中考数学五模试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知函数,则使y=k成立的x值恰好有三个,则k的值为( )A0B1C2D32下列图形中,是轴对称图形但不是中心对称图形的是()A直角梯形 B平行四边形 C矩形 D正五边形32cos 30的

2、值等于()A1BCD24如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为()ABC6D25计算31的结果是()A2 B2 C4 D46菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A3.5B4C7D147已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x22x+kb+1=0 的根的情况是( )A有两个不相等的实数根B没有实数根C有两个相等的实数根D有一个根是 08关于x的不等式的解集为x3,那么a的取值范围为()Aa3Ba3Ca3Da39如图,是半圆的直径,点、是半圆的三

3、等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()ABCD10如图,矩形ABCD内接于O,点P是上一点,连接PB、PC,若AD=2AB,则cosBPC的值为()ABCD11某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()A152元B156元C160元D190元12近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A1.8105B1.8104C0.18106D18104二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在RtABC中,ACB=90,AC=4,BC=3,点D为AB

4、的中点,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,则DB长为_14如图,在ABC中,CA=CB,ACB=90,AB=2,点D为AB的中点,以点D为圆心作圆心角为90的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为_15一个正多边形的一个外角为30,则它的内角和为_16分解因式2x24x+2的最终结果是_17计算:=_.18如图,直线l经过O的圆心O,与O交于A、B两点,点C在O上,AOC=30,点P是直线l上的一个动点(与圆心O不重合),直线CP与O相交于点Q,且PQ=OQ,则满足条件的OCP的大小为_三、解答题:(本大题共9个小题,共78分,解答应写出文字

5、说明、证明过程或演算步骤19(6分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F(1)求证:四边形BDFC是平行四边形;(2)若BCD是等腰三角形,求四边形BDFC的面积20(6分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).(1)求该抛物线的函数表达式.(2)求直线AB关于x轴对称的直线的函数表达式.(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM 0, b0,方程x22x+kb+1=0有两个不等的实数根,故选A【点睛】根的判别式8、D【解析】分析:先解第一个不

6、等式得到x3,由于不等式组的解集为x3,则利用同大取大可得到a的范围详解:解不等式2(x-1)4,得:x3,解不等式a-x0,得:xa,不等式组的解集为x3,a3,故选D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到9、D【解析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OCBD且BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案【详解】解

7、:如图,连接OC、OD、BD,点C、D是半圆O的三等分点,AOC=COD=DOB=60,OC=OD,COD是等边三角形,OC=OD=CD,OB=OD,BOD是等边三角形,则ODB=60,ODB=COD=60,OCBD,S阴影=S扇形OBD,S半圆O,飞镖落在阴影区域的概率,故选:D【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积10、A【解析】连接BD,根据圆周角定理可得cosBDC=cosBPC,又BD为直径,则BCD=90,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cosBDC=,即可得出

8、结论.【详解】连接BD,四边形ABCD为矩形,BD过圆心O,BDC=BPC(圆周角定理)cosBDC=cosBPCBD为直径,BCD=90,=,设DC为x,则BC为2x,BD=x,cosBDC=,cosBDC=cosBPC,cosBPC=.故答案选A.【点睛】本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.11、C【解析】【分析】设进价为x元,依题意得2400.8-x=20x,解方程可得.【详解】设进价为x元,依题意得2400.8-x=20x解得x=160所以,进价为160元.故选C【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.12、A【

9、解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】180000=1.8105,故选A【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题分析:解:在RtABC中,ACB=90,AC=4,BC=3,AB=5,点D为AB的中点,CD=AD=BD=AB=2.5,过D作DEBC,

10、将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,CD=AD=AD,DE=1.5,AE=CE=2,BC=3,BE=1,BD=,故答案为考点:旋转的性质14、【解析】连接CD,根据题意可得DCEBDF,阴影部分的面积等于扇形的面积减去BCD的面积【详解】解:连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:CA=CB,ACB=90,点D为AB的中点,CD平分BCA,又DMBC,DNAC,DM=DN,GDH=MDN=90,GDM=HDN,则在DMG和DNH中, ,DMGDNH(AAS)

11、,S四边形DGCH=S四边形DMCN=则阴影部分的面积是: 故答案为:【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键15、1800【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(122)180=1800故答案为1800考点:多边形内角与外角16、1(x1)1【解析】先提取公因式1,再根据完全平方公式进行二次分解【详解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1故答案为:1(x1)1【点睛】本题考查提公因式法与公式法的综合运用,难度不大17、【解析】分析:按单项式乘以

12、多项式的法则将括号去掉,在合并同类项即可.详解:原式=.故答案为:.点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.18、40【解析】:在QOC中,OC=OQ,OQC=OCQ,在OPQ中,QP=QO,QOP=QPO,又QPO=OCQ+AOC,AOC=30,QOP+QPO+OQC=180,3OCP=120,OCP=40三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)6或【解析】试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况

13、:BD=BC,BD=CD,BC=CD,分别求四边形的面积试题解析:(1)证明:A=ABC=90AFBCCBE=DFE,BCE=FDEE是边CD的中点CE=DEBCEFDE(AAS)BE=EF四边形BDFC是平行四边形(2)若BCD是等腰三角形若BD=DC在RtABD中,AB=四边形BDFC的面积为S=3=6;若BD=DC过D作BC的垂线,则垂足为BC得中点,不可能;若BC=DC过D作DGBC,垂足为G在RtCDG中,DG=四边形BDFC的面积为S=考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积20、(1)(2)(3)【解析】(1)根据待定系数法,可得二次函数的解析式;(2)根据待定

14、系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反数,可得答案;(3)根据PMPN,可得不等式,利用绝对值的性质化简解不等式,可得答案【详解】(1)将A(1,1),B(2,5)代入函数解析式,得:,解得:,抛物线的解析式为y=x22x3;(2)设AB的解析式为y=kx+b,将A(1,1),B(2,5)代入函数解析式,得:,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=(x+1),化简,得:y=x1;(3)设M(n,n22n3),N(n,n+1),PMPN,即|n22n3|n+1|(n+1)(n-3)|-|n+1|1,|n+1|(|n-3|-1)

15、1|n+1|1,|n-3|-11,|n-3|1,1n-31,解得:2n2故当PMPN时,求点P的横坐标xP的取值范围是2xP2【点睛】本题考查了二次函数综合题解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式21、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).【解析】(1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;(2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;(3)用200

16、0乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;(4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解【详解】(1)3030%=100,所以本次抽样调查中的学生人数为100人;(2)选”舞蹈”的人数为10010%=10(人),选“打球”的人数为100301020=40(人),补全条形统计图为:(3)2000=800,所以估计该校课余兴趣爱好为“打球”的学生人数为800人;(4)画树状图为:共有12种等可能的结果数,其中选到一男一女的结果数为8,所以选到一男一女的概率=【点睛】本题考查了条形统计图与扇形统计图,列表法与树状

17、图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比22、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F作FNDK于N,过点E作EMFN于M求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FGK=80,FN=100sin8098,EFG=125,EFM=18012510=45,FM=66cos45=46.53,MN=FN+FM144.5,

18、此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=66sin4546.53,PH46.53,GN=100cos8017,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前9.5cm23、【解析】试题分析:x=1时y=1,x=1时,y=3,x=1时,y=5,解得,y=x2+3x+3,ac=13=31,故正确;对称轴为直线,所以,当x时,y的值随x值的增大而减小,故错误;方程为x2+2x+3=1,整理得,x22x3=1,解得x1=1,x2=3,所以,3是方

19、程ax2+(b1)x+c=1的一个根,正确,故正确;1x3时,ax2+(b1)x+c1正确,故正确;综上所述,结论正确的是故答案为【考点】二次函数的性质24、(1)y=x2+x+3;P( ,)或P( ,);(2) a1;【解析】(1)先判断出AOBGBC,得出点C坐标,进而用待定系数法即可得出结论;分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)的方法,借助图象即可得出结论【详解】(1)如图2,A(1,3),B(1,1),OA=3,OB=1,由旋转知,ABC=91,AB=CB,ABO+CBE=91,过点C作CGOB于G,CBG+BCG=91,ABO=B

20、CG,AOBGBC,CG=OB=1,BG=OA=3,OG=OB+BG=4C(4,1),抛物线经过点A(1,3),和D(2,1),抛物线解析式为y=x2+x+3;由知,AOBEBC,BAO=CBF,POB=BAO,POB=CBF,如图1,OPBC,B(1,1),C(4,1),直线BC的解析式为y=x,直线OP的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍)P(,);在直线OP上取一点M(3,1),点M的对称点M(3,1),直线OP的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍),P(,);(2)同(1)的方法,如图3,抛物线y=ax2+bx+c经过点C(4

21、,1),E(2,1),抛物线y=ax26ax+8a+1,令y=1,ax26ax+8a+1=1,x1x2=符合条件的Q点恰好有2个,方程ax26ax+8a+1=1有一个正根和一个负根或一个正根和1,x1x2=1,a1,8a+11,a,即:a1【点睛】本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.25、(1);(2)-1;【解析】(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题【详解】(1)=2-.(2)=-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角

22、的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法26、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可; (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到: (1)联结CE分类讨论:(i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,利用勾股定理求得a的值; (ii)当C

23、E为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答详解:(1)顶点C在直线x=2上,b=4a 将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=4,抛物线的解析式为y=x24x+1 (2)过点C作CMx轴,CNy轴,垂足分别为M、N y=x24x+1(x2)21,C(2,1) CM=MA=1,MAC=45,ODA=45,OD=OA=1 抛物线y=x24x+1与y轴交于点B,B(0,1),BD=2 抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积, (1)联结CE 四边形BCDE是平行四边形,点O是对角线CE与BD的交点,即 (i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,即 a2=(a2)2+5,解得: ,点 同理,得点; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、 综上所述:满足条件的点有), 点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键27、证明见解析【解析】试题分析:证明三角形ABCDEF,可得.试题解析:证明:,BC=EF,,B=E=90,AC=DF,ABCDEF, AB=DE.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁