《2023届山东省威海市文登区八校联考中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省威海市文登区八校联考中考数学考前最后一卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)12018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A29.8109B2.98109C2.981010D0.29810102如图,右侧立体图形的俯视图是( )A B C D3已知一个正多
2、边形的一个外角为36,则这个正多边形的边数是()A8 B9 C10 D114如图,在中,的垂直平分线交于点,垂足为如果,则的长为( )A2B3C4D65如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.下列判断: 当x2时,M=y2;当x0时,x值越大,M值越大;使得M大于4的x值不存在;若M=2,则x= 1 .其中正确的有 A1个B2个C3个D4个6如图是二次函数yax2+bx+c的图象,对于下列说法:ac0,2a+b0,4acb2,a+b+c0,当x0时,y随x的增大而减小,其中正确
3、的是()ABCD7如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是()ABCD8下列计算正确的是()Aa+a=2aBb3b3=2b3Ca3a=a3D(a5)2=a79如图是二次函数的部分图象,由图象可知不等式的解集是( )ABC且Dx1或x510“赶陀螺”是一项深受人们喜爱的运动如图所示是一个陀螺的立体结构图已知底面圆的直径AB8 cm,圆柱的高BC6 cm,圆锥的高CD3 cm,则这个陀螺的表面积是()A68 cm2B74 cm2C84 cm2D100 cm2二、填空题(共7小题,每小题3分,满分21分)11如图,若双曲线()与边长为3的等边AOB(O为坐标原点)的
4、边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_12如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是_m.13分解因式:_14一个不透明的袋子中装有三个小球,它们除分别标有的数字 1,3,5 不同外,其他完全相同从袋子中任意摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之 和为8的概率是_15观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_(用含n的代数式表示)16的绝对值是_17某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免
5、费携带_kg的行李三、解答题(共7小题,满分69分)18(10分)阅读材料,解答问题材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(3,9)开始,按点的横坐标依次增加1的规律,在抛物线yx2上向右跳动,得到点P2、P3、P4、P5(如图1所示)过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则SP1P2P3S梯形P1H1H3P3S梯形P1H1H2P2S梯形P2H2H3P3(9+1)2(9+4)1(4+1)1,即P1P2P3的面积为1”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出
6、答案);(2)猜想四边形Pn1PnPn+1Pn+2的面积,并说明理由(利用图2);(3)若将抛物线yx2改为抛物线yx2+bx+c,其它条件不变,猜想四边形Pn1PnPn+1Pn+2的面积(直接写出答案)19(5分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为和45,且tan=1求灯杆AB的长度20(8分)在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,C=90,AC=3,BC=4.(1)
7、试在图中作出ABC以A为旋转中心,沿顺时针方向旋转90后的图形AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.21(10分)已知:如图,E是BC上一点,ABEC,ABCD,BCCD求证:ACED22(10分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到 米)(参考数据:,)23(12分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场
8、调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个设销售价格每个降低x元(x为偶数),每周销售为y个(1)直接写出销售量y个与降价x元之间的函数关系式; (2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元? (3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24(14分)如图,在RtABC中,C=90,AC=3,BC=1若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据科
9、学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,且为这个数的整数位数减1,由此即可解答【详解】29.8亿用科学记数法表示为: 29.8亿=29800000002.981故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图3、C【解析】试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是36036=10,故选C.考点:多边形的内角和外角.4、C【解析】先利用垂直平分线
10、的性质证明BE=CE=8,再在RtBED中利用30角的性质即可求解ED【详解】解:因为垂直平分,所以,在中,则;故选:C【点睛】本题主要考查了线段垂直平分线的性质、30直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等5、B【解析】试题分析:当y1=y2时,即时,解得:x=0或x=2,由函数图象可以得出当x2时, y2y1;当0x2时,y1y2;当x0时, y2y1错误当x0时, -直线的值都随x的增大而增大,当x0时,x值越大,M值越大正确抛物线的最大值为4,M大于4的x值不存在正确;当0x2时,y1y2,当M=2时,2x=2,x=1;当x2时,y2y1,当M=2时,解得(舍
11、去)使得M=2的x值是1或错误综上所述,正确的有2个故选B6、C【解析】根据二次函数的图象与性质即可求出答案【详解】解:由图象可知:a0,c0,ac0,故错误;由于对称轴可知:1,2a+b0,故正确;由于抛物线与x轴有两个交点,b24ac0,故正确;由图象可知:x1时,ya+b+c0,故正确;当x时,y随着x的增大而增大,故错误;故选:C【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型7、B【解析】根据相似三角形的判定方法一一判断即可【详解】解:因为中有一个角是135,选项中,有135角的三角形只有B,且满足两边成比例夹角相等,故选:B【点睛】本题考查相似三
12、角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型8、A【解析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解【详解】A.a+a=2a,故本选项正确;B.,故本选项错误;C. ,故本选项错误;D.,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.9、D【解析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
13、图象与x轴的另一个交点坐标为(1,0)由图象可知:的解集即是y0的解集,x1或x1故选D10、C【解析】试题分析:底面圆的直径为8cm,高为3cm,母线长为5cm,其表面积=45+42+86=84cm2,故选C考点:圆锥的计算;几何体的表面积二、填空题(共7小题,每小题3分,满分21分)11、【解析】过点C作CEx轴于点E,过点D作DFx轴于点F,设OC=2x,则BD=x,在RtOCE中,COE=60,则OE=x,CE=,则点C坐标为(x,),在RtBDF中,BD=x,DBF=60,则BF=,DF=,则点D的坐标为(,),将点C的坐标代入反比例函数解析式可得:,将点D的坐标代入反比例函数解析式
14、可得:,则,解得:,(舍去),故=故答案为考点:1反比例函数图象上点的坐标特征;2等边三角形的性质12、12【解析】由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案【详解】解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.【点睛】此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.13、【解析】=
15、2()=.故答案为.14、【解析】根据题意列出表格或树状图即可解答【详解】解:根据题意画出树状图如下:总共有9种情况,其中两个数字之和为8的有2种情况,故答案为:【点睛】本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式15、3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律【详解】解:由题意可知:每1个都比前一个多出了3个“”,第n个图案中共有“”为:4+3(n1)3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型16、 【解析
16、】绝对值是指一个数在数轴上所对应点到原点的距离,用“|”来表示|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】的绝对值是|=【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.17、2【解析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,解得, ,则y=30x-1当y=0时,30x-1=0,解得:x=2故答案为:2【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时
17、求出函数的解析式是关键三、解答题(共7小题,满分69分)18、 (1)2,2;(2)2,理由见解析;(3)2【解析】(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为SP1P2P3P2SOP1H1SOP3H3S梯形P2H2H3P3S梯形P1H1H2P2和SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P3来求解;(2)(3)由图可知,Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n5)2,(n2)2,(n3)2,(n2)2,将四
18、边形面积转化为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2来解答【详解】(1)作P5H5垂直于x轴,垂足为H5,由图可知SP1P2P3P2SOP1H1SOP3H3S梯形P2H2H3P3S梯形P1H1H2P22,SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P32;(2)作Pn1Hn1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直于x轴,垂足为Hn1、Hn、Hn+1、Hn+2,由图可知Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2
19、,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n5)2,(n2)2,(n3)2,(n2)2,四边形Pn1PnPn+1Pn+2的面积为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn22;(3)S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2=-2【点睛】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由
20、于计算量极大,要仔细计算,以免出错,19、灯杆AB的长度为2.3米【解析】过点A作AFCE,交CE于点F,过点B作BGAF,交AF于点G,则FG=BC=2设AF=x知EF=AF=x、DF=,由DE=13.3求得x=11.4,据此知AG=AFGF=1.4,再求得ABG=ABCCBG=30可得AB=2AG=2.3【详解】过点A作AFCE,交CE于点F,过点B作BGAF,交AF于点G,则FG=BC=2由题意得:ADE=,E=45设AF=xE=45,EF=AF=x在RtADF中,tanADF=,DF=DE=13.3,x+=13.3,x=11.4,AG=AFGF=11.42=1.4ABC=120,ABG
21、=ABCCBG=12090=30,AB=2AG=2.3答:灯杆AB的长度为2.3米【点睛】本题主要考查解直角三角形仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力20、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).【解析】(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;(2)根据点B的坐标画出平面直角坐标系;(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.【详解】(1)A如图所示;(2)如图所示,A(0,1),C(3,
22、1);(3)如图所示,(3,5),(3,1)21、见解析【解析】试题分析:已知ABCD,根据两直线平行,内错角相等可得B=ECD,再根据SAS证明ABCECD全,由全等三角形对应边相等即可得AC=ED试题解析:ABCD,B=DCE在ABC和ECD中,ABCECD(SAS),AC=ED考点:平行线的性质;全等三角形的判定及性质22、6.58米【解析】试题分析:过A点作AECD于E在RtABE中,根据三角函数可得AE,BE,在RtADE中,根据三角函数可得DE,再根据DB=DEBE即可求解试题解析:过A点作AECD于E 在RtABE中,ABE=62 AE=ABsin62=250.88=22米,BE
23、=ABcos62=250.47=11.75米, 在RtADE中,ADB=50, DE=18米,DB=DEBE6.58米 故此时应将坝底向外拓宽大约6.58米考点:解直角三角形的应用-坡度坡角问题23、(1)y=10x+160;(2)5280元;(3)10000元.【解析】试题分析:(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答
24、案试题解析:(1)依题意有:y=10x+160;(2)依题意有:W=(8050x)(10x+160)=10(x7)2+5290,-100且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:10(x7)2+52905200,解得4x10,则200y260,20050=10000(元)答:他至少要准备10000元进货成本点睛:此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量每个的利润=W得出函数关系式是解题关键24、R= 或R=【解析】解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点考点:圆与直线的位置关系