《2023届安徽省宣城市第六中学中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省宣城市第六中学中考适应性考试数学试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1关于x的一元二次方程(m2)x2+(2m1)x+m20有两个不相等的正实数根,则m的取值范围是()AmBm且m2Cm2Dm22下列计算正确的是()Aa2a3a
2、6B(a2)3a6Ca2+a2a3Da6a2a33已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为( )A1 B2 C1 D24语文课程标准规定:79年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著那么260万用科学记数法可表示为()A26105B2.6102C2.6106D2601045如图,直角坐标平面内有一点,那么与轴正半轴的夹角的余切值为( )A2BCD64的平方根是( )A4B4C2D27剪纸是我国传统的民间艺术下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )ABCD8关于x的一元二
3、次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2x1x21,则k的取值范围在数轴上表示为( )ABCD9将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )ABCD10不解方程,判别方程2x23x3的根的情况()A有两个相等的实数根B有两个不相等的实数根C有一个实数根D无实数根二、填空题(本大题共6个小题,每小题3分,共18分)11如图,O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_ cm12分解因式:x2yy_13若am=5,an=6,则am+n=_14如图,四边形ABCD中,ADCD,B2D120,C75则 15如图,将ABC放在每个
4、小正方形的边长为1的网格中,点A,点B,点C均落在格点上(1)计算ABC的周长等于_(2)点P、点Q(不与ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC当AQPC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明)_16在平面直角坐标系xOy中,将一块含有45角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C的坐标为_三、解答题(共8题,共72分)17(8
5、分)如果a2+2a-1=0,求代数式的值.18(8分)发现如图1,在有一个“凹角A1A2A3”n边形A1A2A3A4An中(n为大于3的整数),A1A2A3A1+A3+A4+A5+A6+An(n4)180验证如图2,在有一个“凹角ABC”的四边形ABCD中,证明:ABCA+C+D证明3,在有一个“凹角ABC”的六边形ABCDEF中,证明;ABCA+C+D+E+F360延伸如图4,在有两个连续“凹角A1A2A3和A2A3A4”的四边形A1A2A3A4An中(n为大于4的整数),A1A2A3+A2A3A4A1+A4+A5+A6+An(n )18019(8分)一不透明的布袋里,装有红、黄、蓝三种颜色
6、的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;20(8分)(1)计算:22+|4|+()-1+2tan60(2) 求 不 等 式 组的 解 集 21(8分)计算:(1)42tan60+ 22(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)设
7、点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形23(12分)求抛物线y=x2+x2与x轴的交点坐标24一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据一元二次方程的根的判别式的意义得到m20且(2m1)24(m2)(m2) 0,解得m且m2,再利用根与系数的关系得到, m20
8、,解得m2,即可求出答案【详解】解:由题意可知:m20且(2m1)24(m2)212m150,m且m2,(m2)x2+(2m1)x+m20有两个不相等的正实数根,0,m20,m2,m,m2,故选:D【点睛】本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键2、B【解析】试题解析:A.故错误.B.正确.C.不是同类项,不能合并,故错误.D. 故选B.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.3、C【解析】把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2
9、变形后代入计算即可.【详解】把x=1代入x2+mx+n=0,代入1+m+n=0,m+n=-1,m2+2mn+n2=(m+n)2=1.故选C.【点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.4、C【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】260万=2600000=故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值5、B【解析
10、】作PAx轴于点A,构造直角三角形,根据三角函数的定义求解【详解】过P作x轴的垂线,交x轴于点A,P(2,4),OA=2,AP=4,.故选B【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.6、C【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题【详解】(1)1=4,4的平方根是1故选D【点睛】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根7、A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选
11、项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误故选A考点:中心对称图形;轴对称图形8、D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集解:关于x的一元二次方程x2+2x+k+1=0有两个实根,0,44(k+1)0,解得k0,x1+x2=2,x1x2=k+1,2(k+1)1,解得k2,不等式组的解集为2k0,在数轴上表示为:,故选D点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键9、C【解析】试题分析:抛物线向右平移1个单位长度,平移后解
12、析式为:,再向上平移1个单位长度所得的抛物线解析式为:故选C考点:二次函数图象与几何变换10、B【解析】一元二次方程的根的情况与根的判别式有关,方程有两个不相等的实数根,故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、1cm【解析】首先根据题意画出图形,然后连接OA,根据垂径定理得到OC平分AB,即AC=BC,而在RtOAC中,根据勾股数得到AC=4,这样即可得到AB的长【详解】解:如图,连接OA,则OA=5,OC=3,OCAB,AC=BC,在RtOAC中,AC=4,AB=2AC=1故答案为1 【点睛】本题考查垂径定理;勾股定理12、y(x+1)(x1)【解析】观察原式x2yy
13、,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2yyy(x21)y(x+1)(x1)故答案为:y(x+1)(x1)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止13、1【解析】根据同底数幂乘法性质aman=am+n,即可解题.【详解】解:am+n= aman=56=1.【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.14、【解析】连接AC,过点C作CEAB的延长线于点E,,如图,先在RtBEC中根据含30度的直角三角
14、形三边的关系计算出BC、CE,判断AEC为等腰直角三角形,所以BAC=45,AC=,利用即可求解【详解】连接AC,过点C作CEAB的延长线于点E,ABC=2D=120, D=60, ADCD, ADC是等边三角形,D+DAB+ABC+DCB=360, ACB=DCB-DCA=75-60=15, BAC=180-ABC-ACB=180-120-15=45, AE=CE,EBC=45+15=60, BCE=90-60=30,设BE=x,则BC=2x,CE=,在RTAEC中,AC=,故答案为.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形合理作辅助线是解题
15、的关键15、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P 【解析】(1)利用勾股定理求出AB,从而得到ABC的周长;(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.【详解】解:(1)AC=3,BC=4,C=90,根据勾股定理得AB=5,ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。故答案为:(1)1
16、2;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.【点睛】本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.16、(,0)【解析】试题解析:过点B作BDx轴于点D,ACO+BCD=90, OAC+ACO=90,OAC=BCD,在ACO与BCD中, ,ACOBCD(AAS)OC=BD,OA=CD,A(0,2),C(1,0)OD=3,BD=1,B(3,1),设反比例函数的解析式为y=,将B(3,1)代入y=,k=3,y=,把y=2代入y=,x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,C也移动了个单位长度,
17、此时点C的对应点C的坐标为(,0)故答案为(,0).三、解答题(共8题,共72分)17、1 【解析】=1.故答案为1.18、(1)见解析;(2)见解析;(3)1【解析】(1)如图2,延长AB交CD于E,可知ABCBEC+C,BECA+D,即可解答(2)如图3,延长AB交CD于G,可知ABCBGC+C,即可解答(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知A1A2A3+A2A3A4A1+2+A4+4,再找出规律即可解答【详解】(1)如图2,延长AB交CD于E,则ABCBEC+C,BECA+D,ABCA+C+D;(2)如图3,延长AB交CD于G,则ABCBGC+C,BG
18、C180BGC,BGD3180(A+D+E+F),ABCA+C+D+E+F310;(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,则A1A2A3+A2A3A4A1+2+A4+4,1+3(n22)180(A5+A1+An),而2+4310(1+3)310(n22)180(A5+A1+An),A1A2A3+A2A3A4A1+A4+A5+A1+An(n1)180故答案为1【点睛】此题考查多边形的内角和外角,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型19、 (1)1;(2) 【解析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方
19、程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得: 解得:=1 经检验:=1是原分式方程的解口袋中黄球的个数为1个(2)画树状图得: 共有12种等可能的结果,两次摸出都是红球的有2种情况两次摸出都是红球的概率为: .【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件20、(1)1;(2)-1x1.【解析】试题分析:(1)、首先根据绝对值、幂、
20、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解试题解析:解:(1)、(2)、 由得:x1,由得:x-1,不等式的解集:-1x0,b0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k0,b0,又因为取情况:k b1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是.【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .