《2023届山东省淄博市临淄区召口乡中学中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省淄博市临淄区召口乡中学中考一模数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A千里江山图B京津冀协同发展C内蒙古自治区成立七十周年D河北雄安新区建立纪念2如图,在ABC中,C=90,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿
2、AB方向运动到点B动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B设APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )ABCD3如图,AB是O的弦,半径OCAB 于D,若CD=2,O的半径为5,那么AB的长为()A3B4C6D84如图是一个正方体展开图,把展开图折叠成正方体后,“爱”字一面相对面上的字是()A美B丽C泗D阳5不等式2x11的解集在数轴上表示正确的是()ABCD6如图,点E在DBC的边DB上,点A在DBC内部,DAE=BAC=90,AD=AE,AB=AC给出下列结论:BD=CE;ABD+ECB=45;BDCE;BE1=1
3、(AD1+AB1)CD1其中正确的是()ABCD7二次函数y=(x1)2+5,当mxn且mn0时,y的最小值为2m,最大值为2n,则m+n的值为( )AB2CD8如图,等腰直角三角形的顶点A、C分别在直线a、b上,若ab,1=30,则2的度数为()A30B15C10D209如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D10如图,在五边形ABCDE中,A+B+E=300,DP,CP分别平分EDC、BCD,则P的度数是( )A60B65C55D5011如图所示,在长方形纸片ABCD中,AB=32cm,把长方形
4、纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A16cmB20cmC24cmD28cm12如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,直线ab,正方形ABCD的顶点A、B分别在直线a、b上若273,则1 14一个几何体的三视图如左图所示,则这个几何体是( )ABCD15已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为_16已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_1
5、7下面是“作已知圆的内接正方形”的尺规作图过程已知:O求作:O的内接正方形作法:如图,(1)作O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与O交于C、D两点,顺次连接A、C、B、D即四边形ACBD为所求作的圆内接正方形请回答:该尺规作图的依据是_18如图,ABCD中,ACCD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N若AC=9cm,OA=3cm,则图中阴影部分的面积为_cm1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程
6、或演算步骤19(6分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等(tan260.44,cos260.90,tan260.49)(1)A,B 两处粮仓原有存粮各多少吨?(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时
7、35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由20(6分)如图1,菱形ABCD,AB=4,ADC=120o,连接对角线AC、BD交于点O, (1)如图2,将AOD沿DB平移,使点D与点O重合,求平移后的ABO与菱形ABCD重合部分的面积.(2)如图3,将ABO绕点O逆时针旋转交AB于点E,交BC于点F,求证:BE+BF=2,求出四边形OEBF的面积. 21(6分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则
8、树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?22(8分)小敏参加答题游戏,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题: (1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是_;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第_道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大23(8分)列方程或方程组解应用
9、题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车已知小张家距上班地点10千米他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍小张用骑公共自行车方式上班平均每小时行驶多少千米?24(10分)如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,若 AB,求证:四边形 ABCD 是正方形25(10分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=与反比例函数y1=的图象的交点为点B、D,且B(3,1),求:()求反比例函数的解析式;
10、()求点D坐标,并直接写出y1y2时x的取值范围;()动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标26(12分)如图,AB为O直径,C为O上一点,点D是的中点,DEAC于E,DFAB于F(1)判断DE与O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度27(12分)观察猜想:在RtABC中,BAC=90,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90,点D落在点E处,如图所示,则线段CE和线段BD的数量关系是 ,位置关系是 探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图中画出图
11、形,并证明你的判断拓展延伸:如图,BAC90,若ABAC,ACB=45,AC=,其他条件不变,过点D作DFAD交CE于点F,请直接写出线段CF长度的最大值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据中心对称图形的概念求解【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误故选C【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合2、D【解析】在A
12、BC中,C=90,AC=BC=3cm,可得AB=,A=B=45,分当0x3(点Q在AC上运动,点P在AB上运动)和当3x6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【详解】在ABC中,C=90,AC=BC=3cm,可得AB=,A=B=45,当0x3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QNAB于点N,在等腰直角三角形AQN中,求得QN=x,所以y=(0x3),即当0x3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3x6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得
13、PQ=6-x,AP=3,过点Q作QNBC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y=(3x6),即当3x6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答3、D【解析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1【详解】连接OAO的半径为5,CD=2,OD=5-2=3,即OD=3;又AB是O的弦,OCAB,
14、AD=AB;在直角三角形ODC中,根据勾股定理,得AD=4,AB=1故选D【点睛】本题考查了垂径定理、勾股定理解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度4、D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”字一面相对面上的字是“阳”;故本题答案为:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形是解题的关键5、D【解析】先求出不等式的解集,再在数轴上表示出来即可【详解】移项得,2x1+1,合并同类项得,2x2,x的系数化为1得
15、,x1在数轴上表示为:故选D【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键6、A【解析】分析:只要证明DABEAC,利用全等三角形的性质即可一一判断;详解:DAE=BAC=90,DAB=EACAD=AE,AB=AC,DABEAC,BD=CE,ABD=ECA,故正确,ABD+ECB=ECA+ECB=ACB=45,故正确,ECB+EBC=ABD+ECB+ABC=45+45=90,CEB=90,即CEBD,故正确,BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1故正确,故选A点睛:本题考查全等三角形的判定和性质、勾股定理
16、、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题7、D【解析】由mxn和mn0知m0,n0,据此得最小值为1m为负数,最大值为1n为正数将最大值为1n分两种情况,顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出【详解】解:二次函数y=(x1)1+5的大致图象如下:当m0xn1时,当x=m时y取最小值,即1m=(m1)1+5, 解得:m=1当x=n时y取最大值,即1n=(n1)1+5, 解得:n=1或n=1(均不合题意,舍去);当m0x1n时,当x=m时y取最小值,即
17、1m=(m1)1+5, 解得:m=1当x=1时y取最大值,即1n=(11)1+5, 解得:n=, 或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=,m=,m0,此种情形不合题意,所以m+n=1+=8、B【解析】分析:由等腰直角三角形的性质和平行线的性质求出ACD=60,即可得出2的度数详解:如图所示:ABC是等腰直角三角形,BAC=90,ACB=45,1+BAC=30+90=120,ab,ACD=180-120=60,2=ACD-ACB=60-45=15;故选B点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出ACD的度
18、数是解决问题的关键9、C【解析】作MHAC于H,如图,根据正方形的性质得MAH=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCH
19、M,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形也考查了角平分线的性质和正方形的性质10、A【解析】试题分析:根据五边形的内角和等于540,由A+B+E=300,可求BCD+CDE的度数,再根据角平分线的定义可得PDC与PCD的角度和,进一步求得P的度数解:五边形的内角和等于540,A+B+E=300,BCD+CDE=540300=240,BCD、CDE的平分线在五边形内相交于点O,PDC+PCD=(BCD+CDE)=120,P=
20、180120=60故选A考点:多边形内角与外角;三角形内角和定理11、C【解析】首先根据平行线的性质以及折叠的性质证明EAC=DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角ADF中利用勾股定理求解【详解】长方形ABCD中,ABCD,BAC=DCA,又BAC=EAC,EAC=DCA,FC=AF=25cm,又长方形ABCD中,DC=AB=32cm,DF=DC-FC=32-25=7cm,在直角ADF中,AD=24(cm)故选C【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键12、B【解析】根据图示,可得:b0a,|b|a|,据此判断即可【详
21、解】b0a,|b|a|,a+b0,|a+b|= -a-b故选B【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握二、填空题:(本大题共6个小题,每小题4分,共24分)13、107【解析】过C作da, 得到abd,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到1的度数【详解】过C作da, ab, abd,四边形ABCD是正方形,DCB=90, 2=73,6=90-2=17,bd, 3=6=17, 4=90-3=73, 5=180-4=107,ad, 1=5=107,故答案为107.【点睛】本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线
22、平行,内错角相等解决问题的关键是作辅助线构造内错角14、A【解析】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.【详解】根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.主视图中间的线是实线.故选A.【点睛】考查简单几何体的三视图,掌握常见几何体的三视图是解题的关键.15、-2【解析】试题分析:根据题意可得2k+32,k2,解得k2因k为整数,所以k=2考点:一次函数图象与系数的关系16、1【解析】试题解析:如图,菱形ABCD中,BD=8,AB=5,ACBD,OB=BD=4,OA=3,AC=2OA=6,这个菱形的面积为:ACBD=68=1
23、17、相等的圆心角所对的弦相等,直径所对的圆周角是直角【解析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.18、11【解析】阴影部分的面积=扇形ECF的面积-ACD的面积-OCM的面积-扇形AOM的面积-弓形AN的面积【详解】解:连接OM,ON.OM=3,OC=6, 扇形ECF的面积 ACD的面积 扇形AOM的面积 弓形AN的面积 OCM的面积 阴影部分的面积=扇形ECF的面积ACD的面积OCM的面积
24、扇形AOM的面积弓形AN的面积 故答案为【点睛】考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地【解析】(1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;(2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;(3)由题意可知由已知可得ABC中
25、A=26ACB=90且AB=1Km,sinBAC=,要求BC的长,可以运用三角函数解直角三角形【详解】(1)设A,B两处粮仓原有存粮x,y吨根据题意得: 解得:x=270,y=1答:A,B两处粮仓原有存粮分别是270,1吨(2)A粮仓支援C粮仓的粮食是270=162(吨),B粮仓支援C粮仓的粮食是1=72(吨),A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨)234200,此次调拨能满足C粮仓需求(3)如图,根据题意知:A=26,AB=1千米,ACB=90在RtABC中,sinBAC=,BC=ABsinBAC=10.44=79.2此车最多可行驶435=140(千米)279.2,小王
26、途中须加油才能安全回到B地【点睛】求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线20、 (1);(2)2,【解析】分析:(1)重合部分是等边三角形,计算出边长即可.证明:在图3中,取AB中点E,证明,即可得到 ,由知,在旋转过程60中始终有四边形的面积等于 =.详解:(1)四边形为菱形, 为等边三角形 AD/ 为等边三角形,边长 重合部分的面积:证明:在图3中,取AB中点E,由上题知, 又 , ,由知,在旋转过程60中始终有 四边形的面积等于=.点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.21、购买了桂花树
27、苗1棵【解析】分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1), 解得x=1答:购买了桂花树苗1棵点睛:本题主要考查的是一元一次方程的应用,属于基础题型解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系22、(1);(2);(3)一.【解析】(1)直接利用概率公式求解;(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通
28、关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”【详解】解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;故答案为;(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是理由如下:画树状图为:(用Z表示正确选项,C表示错误选项)共有9种等可能的结果数,其中小颖顺利通关的结果数为1,所以小敏顺利通关的概率=;(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,由于,所以建议小敏在答第一道题时使用“求助
29、”【点睛】本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.23、15千米【解析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间4,根据等量关系,列出方程,再解即可【详解】:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4解得:x=15,经检验x=15是原方程的解且符合实际意义答:小张用骑公共自行车方式上班平均每小时行驶15千米24、详见解析.【解析】四边形ABCD是正方形,利用已知条件先证明四边形ABCD是平行四边形,再证明四边形ABCD是矩形,再根据对角线垂直的矩形是正方形即可
30、证明四边形ABCD是正方形【详解】证明:在四边形ABCD中,OA=OC,OB=OD,四边形ABCD是平行四边形,OA=OB=OC=OD,又AC=AO+OC,BD=OB+DO,AC=BD,平行四边形是矩形,在AOB中,AOB是直角三角形,即ACBD,矩形ABCD是正方形.【点睛】本题考查了平行四边形的判定、矩形的判定、正方形的判定以及勾股定理的运用和勾股定理的逆定理的运用,题目的综合性很强25、(1)反比例函数的解析式为y=;(2)D(2,);2x0或x3;(3)P(4,0)【解析】试题分析:(1)把点B(3,1)带入反比例函数中,即可求得k的值;(2)联立直线和反比例函数的解析式构成方程组,化
31、简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;(3)把A(1,a)是反比例函数的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.试题解析:(1)B(3,1)在反比例函数的图象上,-1=,m=-3,反比例函数的解析式为;(2),=,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,当x=-2时,y=,D(2,);y1y2时x的取值范围是-2x;(3)A(1,a)是反比例函数的图象上一点,a=-3,A(1,-3),设直线AB为y=kx+b,,直线AB为y=x-4,令y=0,则x=4,P(4,
32、0)26、(1)DE与O相切,证明见解析;(2)AC=8.【解析】(1)解:(1)DE与O相切证明:连接OD、AD,点D是的中点,=,DAO=DAC,OA=OD,DAO=ODA,DAC=ODA,ODAE,DEAC,DEOD,DE与O相切(2) 连接BC,根据ODF与ABC相似,求得AC的长AC=827、(1)CE=BD,CEBD(2)(1)中的结论仍然成立理由见解析;(3).【解析】分析:(1)线段AD绕点A逆时针旋转90得到AE,根据旋转的性质得到AD=AE,BAD=CAE,得到BADCAE,CE=BD,ACE=B,得到BCE=BCA+ACE=90,于是有CE=BD,CEBD(2)证明的方法
33、与(1)类似(3)过A作AMBC于M,ENAM于N,根据旋转的性质得到DAE=90,AD=AE,利用等角的余角相等得到NAE=ADM,易证得RtAMDRtENA,则NE=MA,由于ACB=45,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到DCF=90,由此得到RtAMDRtDCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值详解:(1)AB=AC,BAC=90,线段AD绕点A逆时针旋转90得到AE,AD=AE,BAD=CAE,BADCAE,CE=BD,ACE=B,BCE=BCA+ACE=90,BDCE;故答案为CE=BD,C
34、EBD(2)(1)中的结论仍然成立理由如下:如图,线段AD绕点A逆时针旋转90得到AE,AE=AD,DAE=90,AB=AC,BAC=90CAE=BAD,ACEABD,CE=BD,ACE=B,BCE=90,即CEBD,线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CEBD(3)如图3,过A作AMBC于M,ENAM于N,线段AD绕点A逆时针旋转90得到AEDAE=90,AD=AE,NAE=ADM,易证得RtAMDRtENA,NE=AM,ACB=45,AMC为等腰直角三角形,AM=MC,MC=NE,AMBC,ENAM,NEMC,四边形MCEN为平行四边形,AMC=90,四边形MCEN为矩形,DCF=90,RtAMDRtDCF,设DC=x,ACB=45,AC=,AM=CM=1,MD=1-x,CF=-x2+x=-(x-)2+,当x=时有最大值,CF最大值为点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质