2023届安徽省明光市中考数学考前最后一卷含解析.doc

上传人:茅**** 文档编号:87789729 上传时间:2023-04-17 格式:DOC 页数:25 大小:1.08MB
返回 下载 相关 举报
2023届安徽省明光市中考数学考前最后一卷含解析.doc_第1页
第1页 / 共25页
2023届安徽省明光市中考数学考前最后一卷含解析.doc_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《2023届安徽省明光市中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省明光市中考数学考前最后一卷含解析.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1计算3(9)的结果是( )A12B12C6D62如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则ABC的正切值是( )AB2CD3随着我国综合国力的提升,中华文化

2、影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )ABCD418的倒数是()A18B18C-D5下列图标中,是中心对称图形的是()ABCD6能说明命题“对于任何实数a,|a|a”是假命题的一个反例可以是()Aa2BaCa1Da7下列图形中,既是中心对称图形,又是轴对称图形的是( )ABCD8在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A千里江山图B京津冀协同发展C内蒙古自治区成立七十周年D河北雄安新区建立纪念9下列每组数分别是三根小木棒的长度,用它们能摆成三角形的

3、是()A3cm,4cm,8cm B8cm,7cm,15cmC13cm,12cm,20cm D5cm,5cm,11cm10在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A1颗B2颗C3颗D4颗11如图,O的半径为6,直径CD过弦EF的中点G,若EOD60,则弦CF的长等于( )A6B6C3D912若直线y=kx+b图象如图所示,则直线y=bx+k的图象大致是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,ACB=90,A=45,CDAB于点

4、D,点P在线段DB上,若AP2-PB2=48,则PCD的面积为_.142018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为_15如图,将量角器和含30角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是_.16如图,在ABC中,ACB=90,ABC=60,AB=6cm,将ABC以点B为中心顺时针旋转,使点C旋转到AB边延长线上的点D处,则AC边扫过的图形(阴影部分)的面

5、积是_cm1(结果保留)17因式分解:a3a=_18如图,AB是O的直径,CD是O的弦,BAD60,则ACD_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度20(6分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300

6、元和500元设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?21(6分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BCy轴,垂足为点C,连结AB,AC求该反比例函数的解析式;若ABC的面积为6,求直线AB的表达式22(8分)如图,在等腰直角ABC中,C是直角,点A在直线MN上,过点C作CEMN于点E,过点B作BFMN于点F(1)如图1,当C,B两点均在直线MN的上方时,直接写出线段AE,BF与CE的数量关系猜测线段AF,BF与CE的数

7、量关系,不必写出证明过程(2)将等腰直角ABC绕着点A顺时针旋转至图2位置时,线段AF,BF与CE又有怎样的数量关系,请写出你的猜想,并写出证明过程(3)将等腰直角ABC绕着点A继续旋转至图3位置时,BF与AC交于点G,若AF=3,BF=7,直接写出FG的长度23(8分)(问题情境)张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在ABC中,ABAC,点P为边BC上任一点,过点P作PDAB,PEAC,垂足分别为D,E,过点C作CFAB,垂足为F,求证:PD+PECF小军的证明思路是:如图2,连接AP,由ABP与ACP面积之和等于ABC的面积可以证得:PD+PECF小俊的证明思路是:如图

8、2,过点P作PGCF,垂足为G,可以证得:PDGF,PECG,则PD+PECF变式探究如图3,当点P在BC延长线上时,其余条件不变,求证:PDPECF;请运用上述解答中所积累的经验和方法完成下列两题:结论运用如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C处,点P为折痕EF上的任一点,过点P作PGBE、PHBC,垂足分别为G、H,若AD8,CF3,求PG+PH的值;迁移拓展图5是一个航模的截面示意图在四边形ABCD中,E为AB边上的一点,EDAD,ECCB,垂足分别为D、C,且ADCEDEBC,AB2dm,AD3dm,BDdmM、N分别为AE、BE的中点,连接DM、CN,求DE

9、M与CEN的周长之和24(10分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a20,b10,求整个长方形运动场的面积25(10分)如图,已知抛物线y=ax22ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线

10、交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由26(12分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FGBE交AE于点G(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O求证:FOED=ODEF27(12分)解不等式组参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据有理数的减法,即可解答【详解】 故选A【点

11、睛】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数2、A【解析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到ABC是直角三角形,根据正切的定义计算即可详解:连接AC,由网格特点和勾股定理可知,AC=,AC2+AB2=10,BC2=10,AC2+AB2=BC2,ABC是直角三角形,tanABC=.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键3、B【解析】【分析】科学记数法的表示形式为a10n的形式,其

12、中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】210万=2100000,2100000=2.1106,故选B【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、C【解析】根据乘积为1的两个数互为倒数,可得一个数的倒数【详解】-18=1,18的倒数是,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键5、B【解析】根据中心对称图形的概念 对各选项分析判断即可得解【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项

13、错误;D、不是中心对称图形,故本选项错误故选B【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合6、A【解析】将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.【详解】(1)当时,此时,当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;(2)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;(3)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;(4)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法

14、和求一个数的绝对值及相反数的方法”是解答本题的关键.7、C【解析】根据中心对称图形和轴对称图形对各选项分析判断即可得解【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、C【解析】根据中心对称图形的概念求解【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项

15、不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误故选C【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合9、C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】A、3+48,不能组成三角形;B、8+715,不能组成三角形;C、13+1220,能够组成三角形;D、5+511,不能组成三角形故选:C【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.10、B【解析】试题解析:由题意得,解得:故选B11、B【解析】连接DF,根据垂径定理得到

16、 , 得到DCF=EOD=30,根据圆周角定理、余弦的定义计算即可【详解】解:连接DF,直径CD过弦EF的中点G,DCF=EOD=30,CD是O的直径,CFD=90,CF=CDcosDCF=12 = ,故选B【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键12、A【解析】根据一次函数y=kx+b的图象可知k1,b1,再根据k,b的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,即可判断【详解】解:一次函数y=kx+b的图象可知k1,b1,-b1,一次函数y=bx+k的图象过一、二、三象限,与y轴的正半轴相交,

17、故选:A【点睛】本题考查了一次函数的图象与系数的关系函数值y随x的增大而减小k1;函数值y随x的增大而增大k1;一次函数y=kx+b图象与y轴的正半轴相交b1,一次函数y=kx+b图象与y轴的负半轴相交b1,一次函数y=kx+b图象过原点b=1二、填空题:(本大题共6个小题,每小题4分,共24分)13、6【解析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48,利用平方差公式及线段的和差公式将其变形可得CDPD=12,利用PCD的面积 =CDPD可得.【详解】解: 在ABC中,ACB=

18、90,A=45,B=45,AC=BC,CDAB,AD=BD=CD=AB,AP2-PB2=48,(AP+PB)(AP-PB)=48,AB(AD+PD-BD+DP)=48,AB2PD=48,2CD2PD=48,CDPD=12, PCD的面积=CDPD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一14、3.3081【解析】正确用科学计数法表示即可.【详解】解:33080=3.3081【点睛】科学记数法的表示形式为的形式, 其中1|a|10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相

19、同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.15、60.【解析】首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得AOCABC60,又由AE是切线,易证得RtAOERtAOC,继而求得AOE的度数,则可求得答案【详解】设半圆的圆心为O,连接OE,OA,CD2OC2BC,OCBC,ACB90,即ACOB,OABA,AOCABC,BAC30,AOCABC60,AE是切线,AEO90,AEOACO90,在RtAOE和RtAOC中,RtAOERtAOC(HL),AOEAOC60,EOD180AOEAOC60,点E所对应的量角器上的刻度

20、数是60,故答案为:60.【点睛】本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用16、9【解析】根据直角三角形两锐角互余求出BAC=30,再根据直角三角形30角所对的直角边等于斜边的一半可得BC=AB,然后求出阴影部分的面积=S扇形ABES扇形BCD,列计算即可得解【详解】C是直角,ABC=60,BAC=9060=30,BC=AB=6=3(cm),ABC以点B为中心顺时针旋转得到BDE,SBDE=SABC,ABE=CBD=18060=110,阴影部分的面积=S扇形ABE+SBDES扇形BCDSABC=S扇形ABES扇形

21、BCD= =113=9(cm1)故答案为9【点睛】本题考查了旋转的性质,扇形的面积计算,直角三角形30角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键17、a(a1)(a + 1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解解答:解:a3-a,=a(a2-1),=a(a+1)(a-1)18、1【解析】连接BD根据圆周角定理可得.【详解】解:如图,连接BDAB是O的直径,ADB90,B90DAB1,ACDB1,故答案为1【点睛】考核知识点:圆周角定理.理解定义是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明

22、过程或演算步骤19、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时【解析】设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x的分式方程,解之经检验后即可得出结论【详解】设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据题意得:=3,解得:x1=161,x2=264(不合题意,舍去),经检验,x=161是原方程的解,x+99=264,1320(x+99)=1答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时【点睛】本

23、题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.20、(1)w200x+8600(0x6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元【解析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D

24、的数量,再根据总费用A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6x吨,A粮仓运往C市粮食10x吨,A粮仓运往D市粮食12(10x)x+2吨,总运费w300x+500(6x)+400(10x)+800(x+2)200x+8600(0x6)(2)200x+86009000解得x2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10

25、台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w200x+8600k0,所以当x0时,总运费最低也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义21、(1)y;(2)yx+1【解析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作ADBC于D,则D(2,b),即可利用a表示出AD的

26、长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案【详解】(1)由题意得:kxy236,反比例函数的解析式为y;(2)设B点坐标为(a,b),如图,作ADBC于D,则D(2,b),反比例函数y的图象经过点B(a,b),b,AD3,SABCBCADa(3)6,解得a6,b1,B(6,1),设AB的解析式为ykx+b,将A(2,3),B(6,1)代入函数解析式,得,解得:,所以直线AB的解析式为yx+1【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键22、(1)AE+B

27、F =EC;AF+BF=2CE;(2)AFBF=2CE,证明见解析;(3)FG=【解析】(1)只要证明ACEBCD(AAS),推出AE=BD,CE=CD,推出四边形CEFD为正方形,即可解决问题;利用中结论即可解决问题;(2)首先证明BF-AF=2CE由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FGEC,可知,由此即可解决问题;【详解】解:(1)证明:如图1,过点C做CDBF,交FB的延长线于点D,CEMN,CDBF,CEA=D=90,CEMN,CDBF,BFMN,四边形CEFD为矩形,ECD=90,又ACB=90,ACB-ECB=ECD-ECB,即ACE=BCD,又AB

28、C为等腰直角三角形,AC=BC,在ACE和BCD中,ACEBCD(AAS),AE=BD,CE=CD,又四边形CEFD为矩形,四边形CEFD为正方形,CE=EF=DF=CD,AE+BF=DB+BF=DF=EC由可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE图2中,过点C作CGBF,交BF延长线于点G,AC=BC可得AEC=CGB,ACE=BCG,在CBG和CAE中,CBGCAE(AAS),AE=BG,AF=AE+EF,AF=BG+CE=BF+FG+CE=2CE+BF,AF-BF=2CE;(3)如图3,过点C做CDBF,交FB的于点D,AC=BC

29、可得AEC=CDB,ACE=BCD,在CBD和CAE中,CBDCAE(AAS),AE=BD,AF=AE-EF,AF=BD-CE=BF-FD-CE=BF-2CE,BF-AF=2CEAF=3,BF=7,CE=EF=2,AE=AF+EF=5,FGEC,FG=【点睛】本题考查几何变换综合题、正方形的判定和性质、全等三角形的判定和性质、平行线分线段成比例定理、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23、小军的证明:见解析;小俊的证明:见解析;变式探究见解析;结论运用PG+PH的值为1;迁移拓展(6+2)dm【解析】小军的证明:连接AP,利用面积法即可证得;小

30、俊的证明:过点P作PGCF,先证明四边形PDFG为矩形,再证明PGCCEP,即可得到答案;变式探究小军的证明思路:连接AP,根据SABCSABPSACP,即可得到答案;小俊的证明思路:过点C,作CGDP,先证明四边形CFDG是矩形,再证明CGPCEP即可得到答案;结论运用 过点E作EQBC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BEBF即可得到答案;迁移拓展延长AD,BC交于点F,作BHAF,证明ADEBCE得到FA=FB,设DHx,利用勾股定理求出x得到BH6,再根据ADEBCE90,且M,N分别为AE,BE的中点即可得到答案.【详解】小军的证明

31、:连接AP,如图PDAB,PEAC,CFAB,SABCSABP+SACP,ABCFABPD+ACPE,ABAC,CFPD+PE小俊的证明:过点P作PGCF,如图2,PDAB,CFAB,PGFC,CFDFDGFGP90,四边形PDFG为矩形,DPFG,DPG90,CGP90,PEAC,CEP90,PGCCEP,BDPDPG90,PGAB,GPCB,ABAC,BACB,GPCECP,在PGC和CEP中, PGCCEP,CGPE,CFCG+FGPE+PD;变式探究小军的证明思路:连接AP,如图,PDAB,PEAC,CFAB,SABCSABPSACP,ABCFABPDACPE,ABAC,CFPDPE;

32、小俊的证明思路:过点C,作CGDP,如图,PDAB,CFAB,CGDP,CFDFDGDGC90,CFGD,DGC90,四边形CFDG是矩形,PEAC,CEP90,CGPCEP,CGDP,ABDP,CGPBDP90,CGAB,GCPB,ABAC,BACB,ACBPCE,GCPECP,在CGP和CEP中, CGPCEP,PGPE,CFDGDPPGDPPE结论运用如图过点E作EQBC,四边形ABCD是矩形,ADBC,CADC90,AD8,CF3,BFBCCFADCF5,由折叠得DFBF,BEFDEF,DF5,C90,DC1, EQBC,CADC90,EQC90CADC,四边形EQCD是矩形,EQDC

33、1,ADBC,DEFEFB,BEFDEF,BEFEFB,BEBF,由问题情景中的结论可得:PG+PHEQ,PG+PH1PG+PH的值为1迁移拓展延长AD,BC交于点F,作BHAF,如图,ADCEDEBC, EDAD,ECCB,ADEBCE90,ADEBCE,ACBE,FAFB,由问题情景中的结论可得:ED+ECBH,设DHx,AHAD+DH3+x,BHAF,BHA90,BH2BD2DH2AB2AH2,AB2,AD3,BD,()2x2(2)2(3+x)2, x1,BH2BD2DH237136,BH6,ED+EC6,ADEBCE90,且M,N分别为AE,BE的中点,DMEMAE,CNENBE, D

34、EM与CEN的周长之和DE+DM+EM+CN+EN+ECDE+AE+BE+ECDE+AB+ECDE+EC+AB6+2,DEM与CEN的周长之和(6+2)dm【点睛】此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.24、(1)(2)(3)【解析】试题分析:(1)结合图形可得矩形B的长可表示为:a+b,宽可表示为:a-b,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可试题解析:(1)矩

35、形B的长可表示为:a+b,宽可表示为:a-b,每个B区矩形场地的周长为:2(a+b+a-b)=4a;(2)整个矩形的长为a+a+b=2a+b,宽为:a+a-b=2a-b,整个矩形的周长为:2(2a+b+2a-b)=8a;(3)矩形的面积为:S=(2a+b)(2a-b)= ,把,代入得,S=4202-102=4400-100=1500.点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽25、(1)y=x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2,0),Q1(2+,0),Q4(,0),Q5(,0).【解析】(1)根据抛物线

36、的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标(1)此题要分三种情况讨论:点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,

37、根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;M、N在x轴下方,且以N为直角顶点时,方法同【详解】解:(1)由y=ax22ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(1,0);OC=1OA,C(0,1);依题意有:,解得;y=x2+2x+1(2)存在DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),C(0,1),P(2,1),CP=2,D(1,4

38、),CD=2,由此时CDPD,根据垂线段最短可得,PC不可能与CD相等;PC=PD时,CP22=(1y)2+x2,DP22=(x1)2+(4y)2(1y)2+x2=(x1)2+(4y)2将y=x2+2x+1代入可得:, ;P2(,)综上所述,P(2,1)或(,)(1)存在,且Q1(1,0),Q2(2,0),Q1(2+,0),Q4(,0),Q5(,0);若Q是直角顶点,由对称性可直接得Q1(1,0);若N是直角顶点,且M、N在x轴上方时;设Q2(x,0)(x1),MN=2Q1O2=2(1x),Q2MN为等腰直角三角形;y=2(1x)即x2+2x+1=2(1x);x1,Q2(,0);由对称性可得Q

39、1(,0);若N是直角顶点,且M、N在x轴下方时;同理设Q4(x,y),(x1)Q1Q4=1x,而Q4N=2(Q1Q4),y为负,y=2(1x),(x2+2x+1)=2(1x),x1,x=,Q4(-,0);由对称性可得Q5(+2,0)【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.26、(1)证明见解析;(2)AG=;(3)证明见解析.【解析】(1)根据正方形的性质得到ADBC,ABCD,ADCD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于B

40、MBE,得到GFFH,由GFAD,得到,等量代换得到,即,于是得到结论【详解】解:(1)四边形ABCD是正方形,ADBC,ABCD,AD=CD,GFBE,GFBC,GFAD,ABCD,AD=CD,GF=BF;(2)EB=1,BC=4,=4,AE=,=4,AG=;(3)延长GF交AM于H,GFBC,FHBC,BM=BE,GF=FH,GFAD, ,FOED=ODEF【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等27、x1【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:,由得x1,由得x1,原不等式组的解集是x1点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁