《2023届山东省沂南县重点中学中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省沂南县重点中学中考联考数学试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1分式方程的解为( )Ax=-2Bx=-3Cx=2Dx=32若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm13甲队修路120 m与乙队
2、修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A B C D4如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()A2mB mC3mD6m5如图是二次函数图象的一部分,其对称轴为x=1,且过点(3,0)下列说法:abc0;1ab=0;4a+1b+c0;若(5,y1),(,y1)是抛物线上两点,则y1y1其中说法正确的是( )A B C D6将一副直角三角尺如图放置,若AOD=20,则BOC的大小为( )A140B160C170D1507如图,反比例函数y的图象与直线yx的交点为A
3、、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则ABC的面积为( )A8 B6 C4 D28下列安全标志图中,是中心对称图形的是( )ABCD9下列运算正确的()A(b2)3=b5Bx3x3=xC5y33y2=15y5Da+a2=a310已知BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的O与射线AC有公共点,那么x的取值范围是( )A0x1B1xC0xDx二、填空题(本大题共6个小题,每小题3分,共18分)11将一副三角板如图放置,若,则的大小为_12计算的结果是_13已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实
4、数根,则a的取值范围是_14不等式4x的解集为_15某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_元.16如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且ABx轴,则以AB为边的等边三角形ABC的周长为 .三、解答题(共8题,共72分)17(8分)如图,ABC中,CD是边AB上的高,且求证:ACDCBD;求ACB的大小18(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,
5、测得CD的长等于21米,在上点D的同侧取点A、B,使CAD=30,CBD=60求AB的长(精确到0.1米,参考数据:);已知本路段对校车限速为40千米小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由19(8分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于120(8分)如图,已知反比例函数y=(x0)的图象与一次函数y=x+4的图象交于A和B(6,n)两点
6、求k和n的值;若点C(x,y)也在反比例函数y=(x0)的图象上,求当2x6时,函数值y的取值范围21(8分)如图,在平面直角坐标系中,已知AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把AOP绕着点A按逆时针方向旋转,使边AO与AB重合,连接OD,PD,得OPD。(1)当t时,求DP的长(2)在点P运动过程中,依照条件所形成的OPD面积为S当t0时,求S与t之间的函数关系式当t0时,要使s,请直接写出所有符合条件的点P的坐标.22(10分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转角,得到矩形AB
7、CD,BC与AD交于点E,AD的延长线与AD交于点F(1)如图,当=60时,连接DD,求DD和AF的长;(2)如图,当矩形ABCD的顶点A落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值23(12分)如图,在ABC中,C90,CAB50,按以下步骤作图:以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;作射线AG,交BC边于点D则ADC的度数为( )A40B55C65D7524解方程组:参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:去分母得:2x=x3
8、,解得:x=3,经检验x=3是分式方程的解故选B2、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C3、A【解析】分析:甲队每天修路xm,则乙队每天修(x10)m,因为甲、乙两队所用的天数相同,所以,。故选A。4、C【解析】依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,三根木条要组成三角形,x-x10-2xx+x,解得:.故选择C.【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.5、C【解析】二
9、次函数的图象的开口向上,a0。二次函数的图象y轴的交点在y轴的负半轴上,c0。二次函数图象的对称轴是直线x=1,。b=1a0。abc0,因此说法正确。1ab=1a1a=0,因此说法正确。二次函数图象的一部分,其对称轴为x=1,且过点(3,0),图象与x轴的另一个交点的坐标是(1,0)。把x=1代入y=ax1+bx+c得:y=4a+1b+c0,因此说法错误。二次函数图象的对称轴为x=1,点(5,y1)关于对称轴的对称点的坐标是(3,y1),当x1时,y随x的增大而增大,而3y1y1,因此说法正确。综上所述,说法正确的是。故选C。6、B【解析】试题分析:根据AOD=20可得:AOC=70,根据题意
10、可得:BOC=AOB+AOC=90+70=160.考点:角度的计算7、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则ABC的面积=2|k|=24=1故选A考点:反比例函数系数k的几何意义8、B【解析】试题分析:A不是中心对称图形,故此选项不合题意;B是中心对称图形,故此选项符合题意;C不是中心对称图形,故此选项不符合题意;D不是中心对称图形,故此选项不合题意;故选B考点:中心对称图形9、C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则详解:A、(b2)3=b6,故此选项错误;B、x3x3=1,故此选项错误;C、5y33y2
11、=15y5,正确;D、a+a2,无法计算,故此选项错误故选C点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键10、C【解析】如下图,设O与射线AC相切于点D,连接OD,ADO=90,BAC=45,ADO是等腰直角三角形,AD=DO=1,OA=,此时O与射线AC有唯一公共点点D,若O再向右移动,则O与射线AC就没有公共点了,x的取值范围是.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、160【解析】试题分析:先求出COA和BOD的度数,代入BOC=COA+AOD+BOD求出即可解:AOD=20,COD=AOB
12、=90,COA=BOD=9020=70,BOC=COA+AOD+BOD=70+20+70=160,故答案为160考点:余角和补角12、 【解析】【分析】根据二次根式的运算法则进行计算即可求出答案【详解】=,故答案为.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.13、a2且a1【解析】利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围【详解】试题解析:关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,=b2-4ac0,即4-4(a-2)10,解这个不等式得,a2,又二次项系数是(a-1),a1故a的取值范围是a2且a1【点睛】本题考查的是
13、一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零14、x1【解析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x182x,移项合并得:3x12,解得:x1,故答案为:x1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.15、28【解析】设这种电子产品的标价为x元,由题意得:0.9x21=2120%,解得:x=28,所以这种电子产品的标价为28元故答案为28.16、18。【解析】根据二次函数的性质,抛物线的对称轴为x=3。A是抛物线与y轴
14、的交点,点B是这条抛物线上的另一 点,且ABx轴。A,B关于x=3对称。AB=6。又ABC是等边三角形,以AB为边的等边三角形ABC的周长为63=18。三、解答题(共8题,共72分)17、(1)证明见试题解析;(2)90【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明ACDCBD;(2)由(1)知ACDCBD,然后根据相似三角形的对应角相等可得:A=BCD,然后由A+ACD=90,可得:BCD+ACD=90,即ACB=90试题解析:(1)CD是边AB上的高,ADC=CDB=90,ACDCBD;(2)ACDCBD,A=BCD,在ACD中,ADC=90,A+ACD=90
15、,BCD+ACD=90,即ACB=90 考点:相似三角形的判定与性质18、(1)24.2米(2) 超速,理由见解析【解析】(1)分别在RtADC与RtBDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速【详解】解:(1)由題意得,在RtADC中,在RtBDC中,AB=ADBD=(米)(2)汽车从A到B用时2秒,速度为24.22=12.1(米/秒),12.1米/秒=43.56千米/小时,该车速度为43.56千米/小时43.56千米/小时大于40千米/小时,此校车在AB路段超速19、(
16、1);(2)【解析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率【详解】第二次第一次6276(6,6)(6,2)(6,7)2(2,6)(2,2)(2,7)7(7,6)(7,2)(7,7)(1)P(两数相同)=(2)P(两数和大于1)=【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率20、(1)n=1,k=1(2)当2x1时,1y2【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由k=10结合反比例函数的性质,即可
17、求出:当2x1时,1y2【详解】(1)当x=1时,n=1+4=1,点B的坐标为(1,1)反比例函数y=过点B(1,1),k=11=1;(2)k=10,当x0时,y随x值增大而减小,当2x1时,1y2【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.21、(1)DP=;(2);.【解析】(1)先判断出ADP是等边三角形,进而得出DP=AP,即可得出结论;(2)先求出GH= 2,进而求出DG,再得出DH,即可得出结论;分两种情况,利用三角形的面积建立方程求解即可得出结论
18、【详解】解:(1)A(0,4),OA=4,P(t,0),OP=t,ABD是由AOP旋转得到,ABDAOP,AP=AD,DAB=PAO,DAP=BAO=60,ADP是等边三角形,DP=AP, ,;(2)当t0时,如图1,BD=OP=t,过点B,D分别作x轴的垂线,垂足于F,H,过点B作x轴的平行线,分别交y轴于点E,交DH于点G,OAB为等边三角形,BEy轴,ABP=30,AP=OP=2,ABD=90,DBG=60,DG=BDsin60= ,GH=OE=2, , ;当t0时,分两种情况:点D在x轴上时,如图2在RtABD中,(1)当 时,如图3,BD=OP=-t,或, 或,(2)当 时,如图4,
19、BD=OP=-t,或(舍) 【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,三角形的面积公式以及解直角三角形,正确作出辅助线是解决本题的关键22、(1)DD=1,AF= 4;(2);(1)【解析】(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,只要证明CDD是等边三角形即可解决问题;如图中,连接CF,在RtCDF中,求出FD即可解决问题;(2)由ADFADC,可推出DF的长,同理可得CDECBA,可求出DE的长,即可解决问题;(1)如图中,作FGCB于G,由SACF=ACCF=AFCD,把问题转化为求AFCD,只要证明ACF=90,证明CADF
20、AC,即可解决问题;【详解】解:(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,AD=AD=BC=BC=4,CD=CD=AB=AB=1ADC=ADC=90=60,DCD=60,CDD是等边三角形,DD=CD=1如图中,连接CFCD=CD,CF=CF,CDF=CDF=90,CDFCDF,DCF=DCF=DCD=10在RtCDF中,tanDCF=,DF=,AF=ADDF=4(2)如图中,在RtACD中,D=90,AC2=AD2+CD2,AC=5,AD=2DAF=CAD,ADF=D=90,ADFADC,DF=同理可得CDECBA,ED=,EF=ED+DF=(1)如图中,作FGC
21、B于G四边形ABCD是矩形,GF=CD=CD=1SCEF=EFDC=CEFG,CE=EF,AE=EF,AE=EF=CE,ACF=90ADC=ACF,CAD=FAC,CADFAC,AC2=ADAF,AF=SACF=ACCF=AFCD,ACCF=AFCD=23、C【解析】试题分析:由作图方法可得AG是CAB的角平分线,CAB=50,CAD=CAB=25,C=90,CDA=9025=65,故选C考点:作图基本作图24、 【解析】设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可【详解】设=a, =b,则原方程组化为:,+得:4a=4,解得:a=1,把a=1代入得:1+b=3,解得:b=2,即,解得:,经检验是原方程组的解,所以原方程组的解是【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.