《2023届四川省简阳市养马区市级名校中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省简阳市养马区市级名校中考数学四模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1我国古代易经一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A84B336C510D13262在,,则的值为( )ABCD3如图,AB是O的弦,半径OCAB于点D,若O
2、的半径为5,AB=8,则CD的长是( )A2 B3 C4 D54如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A60cm2B50cm2C40cm2D30cm25如图,ABCD,DEBE,BF、DF分别为ABE、CDE的角平分线,则BFD()A110B120C125D1356已知O及O外一点P,过点P作出O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:连接OP,作OP的垂直平分线l,交OP于点A;以点A为圆心、OA为半径画弧、交O于点M;作直线PM,则直线PM即为
3、所求(如图1)乙:让直角三角板的一条直角边始终经过点P;调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在O上,记这时直角顶点的位置为点M;作直线PM,则直线PM即为所求(如图2)对于两人的作业,下列说法正确的是( )A甲乙都对B甲乙都不对C甲对,乙不对D甲不对,已对7下列运算正确的是( )ABCD8如图,在ABC中,C90,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MNAB,MC6,NC,则四边形MABN的面积是( )ABCD9 “车辆随机到达一个路口,遇到红灯”这个事件是( )A不可能事件B不确定事件C确定事件D必然事件10为了纪念物理学家费米,物理学界以费
4、米(飞米)作为长度单位已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为()A11015B0.11014C0.011013D0.011012二、填空题(本大题共6个小题,每小题3分,共18分)11如图,ABC中,点D、E分别在边AB、BC上,DEAC,若DB=4,AB=6,BE=3,则EC的长是_12如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米132017年7月27日上映的国产电影战狼2,风靡全国剧中“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实
5、力与影响力,累计票房56.8亿元将56.8亿元用科学记数法表示为_元14如图,在RtABC中,ACB=90,将边BC沿斜边上的中线CD折叠到CB,若B=48,则ACB=_15不等式5x33x+5的非负整数解是_16若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120的扇形,则该圆锥的侧面面积为_cm(结果保留)三、解答题(共8题,共72分)17(8分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC2.7米,C
6、D11.5米,CDE120,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度(结果保留根号)18(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_,图中m的值是_;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数19(8分)如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图
7、象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.20(8分)如图,在ABC中,ABAC,BAC90,M是BC的中点,延长AM到点D,AEAD,EAD90,CE交AB于点F,CDDF(1)CAD_度;(2)求CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明21(8分)如图所示,在中,用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)连接AP当为多少度时,AP平分22(10分)如图,在ABCD中,BAC=90,对角线AC,BD相交于点P,以AB为直径的O分别交BC,BD于点E,Q,连接E
8、P并延长交AD于点F(1)求证:EF是O的切线;(2)求证:=4BPQP23(12分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件求原计划每天生产的零件个数和规定的天数为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数24已知关于x的一元二次方程3x26x+1k=0有实数根,k为负整数求k的值;如果这个方程有
9、两个整数根,求出它的根参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:173+372+27+6=510,故选:C点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.2、A【解析】本题可以利用锐角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 3、A【解析】试题分析:已知AB是O的弦,半径OCAB于点D,由垂径定理可得AD=BD=4,在RtADO中,由勾股定理可得OD=3,所以CD=OC-O
10、D=5-3=2.故选A.考点:垂径定理;勾股定理.4、D【解析】标注字母,根据两直线平行,同位角相等可得B=AED,然后求出ADE和EFB相似,根据相似三角形对应边成比例求出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解【详解】解:如图,正方形的边DECF,B=AED,ADE=EFB=90,ADEEFB,设BF=3a,则EF=5a,BC=3a+5a=8a,AC=8a=a,在RtABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,红、蓝两张纸片
11、的面积之和=a8a-(5a)1,=a1-15a1,=a1,=,=30cm1故选D【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.5、D【解析】如图所示,过E作EGABABCD,EGCD,ABE+BEG=180,CDE+DEG=180,ABE+BED+CDE=360又DEBE,BF,DF分别为ABE,CDE的角平分线,FBE+FDE=(ABE+CDE)=(36090)=135,BFD=360FBEFDEBED=36013590=135故选D【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意
12、:两直线平行,同旁内角互补解决问题的关键是作平行线6、A【解析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到O=AMO,AMP=MPA,所以OMA+AMP=O+MPA=90,得出MP是O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,所以OMP=90,得到MP是O的切线【详解】证明:(1)如图1,连接OM,OA连接OP,作OP的垂直平分线l,交OP于点A,OA=AP以点A为圆心、OA为半径画弧、交O于点M;OA=MA=AP,O=AMO,AMP=MPA,OMA+AMP=O+MPA=90,OMMP,MP是O的切线;
13、(1)如图1直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,OMP=90,MP是O的切线故两位同学的作法都正确故选A【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性7、D【解析】根据幂的乘方:底数不变,指数相乘合并同类项即可解答.【详解】解:A、B两项不是同类项,所以不能合并,故A、B错误,C、D考查幂的乘方运算,底数不变,指数相乘 ,故D正确;【点睛】本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.8、C【解析】连接CD,交MN于E,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MNCD,且CE=DECD=2CEMN
14、AB,CDABCMNCAB在CMN中,C=90,MC=6,NC=,故选C9、B【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、A【解析】根据科学记数法的表示方法解答.【详解】解:把这个数用科学记数法表示为故选:【点睛】此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表
15、示法是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】由ABC中,点D、E分别在边AB、BC上,DEAC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案【详解】解:DEAC,DB:AB=BE:BC,DB=4,AB=6,BE=3,4:6=3:BC,解得:BC=,EC=BCBE=3=故答案为【点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例12、【解析】先利用ABC为等腰直角三角形得到AB=1,再设圆锥的
16、底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2r=,然后解方程即可【详解】O的直径BC=,AB=BC=1,设圆锥的底面圆的半径为r,则2r=,解得r=,即圆锥的底面圆的半径为米故答案为13、5.68109【解析】试题解析:科学记数法的表示形式为的形式,其中 为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值1时,是正数;当原数的绝对值1时,是负数56.8亿 故答案为14、6【解析】B=48,ACB=90,所以A=42,DC是中线,所以BCD=B=48,DCA=A=48
17、,因为BCD=DCB=48,所以ACB=48-46=6.15、0,1,2,1【解析】5x11x+5,移项得,5x1x5+1,合并同类项得,2x8,系数化为1得,x4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键 16、12【解析】根据圆锥的侧面展开图是扇形可得,该圆锥的侧面面积为:12,故答案为12.三、解答题(共8题,共72分)17、DE的长度为6+1【解析】根据相似三角形的判定与性质解答即可【详解】解:过E作EFBC,CDE120,EDF60,设EF为x,DFx,BEFC90,ACBECD,ABCEFC,即,
18、解得:x9+2,DE=6+1,答:DE的长度为6+1【点睛】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题18、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解
19、即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.19、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
20、(2)根据旋转的知识可得:A(1,0),B(0,2),OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)将原抛物线沿y轴向下平移1个单位后过点C平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想详解: (1)已知抛物线经过,,解得,所求抛物线的解析式为.(2),,可得旋转后点的坐标为.当时,由得,可知抛物线过点.将原抛物线沿轴向下平移1个单位长度后过点.平移后的抛物线解析式为:.(3)点在上,可设点坐标为,将配方得,其对称轴为.由题得(0,1
21、)当时,如图,此时,点的坐标为.当时,如图,同理可得,此时,点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用20、(1)45;(2)90;(3)见解析.【解析】(1)根据等腰三角形三线合一可得结论;(2)连接DB,先证明BADCAD,得BDCDDF,则DBADFBDCA,根据四边形内角和与平角的定义可得BAC+CDF180,所以CDF90;(3)证明EAFDAF,得DFEF,由可知,可得结论【详解】(1)解:ABAC,M是BC的中点,AMBC,BAD
22、CAD,BAC90,CAD45,故答案为:45(2)解:如图,连接DBABAC,BAC90,M是BC的中点,BADCAD45BADCAD DBADCA,BDCDCDDF,BDDF DBADFBDCADFBDFA180,DCADFA180BACCDF180CDF90(3)证明:EAD90,EAFDAF45ADAE,EAFDAFDFEF由可知,【点睛】此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.21、(1)详见解析;(2)30【解析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的
23、定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+PAB+B=90,3B=90,解得:B=30,当时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键22、(1)证明见解析;(2)证明见解析【解析】试题分析:(1)连接OE,AE,由AB是O的直径,
24、得到AEB=AEC=90,根据四边形ABCD是平行四边形,得到PA=PC推出OEP=OAC=90,根据切线的判定定理即可得到结论;(2)由AB是O的直径,得到AQB=90根据相似三角形的性质得到=PBPQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论试题解析:(1)连接OE,AE,AB是O的直径,AEB=AEC=90,四边形ABCD是平行四边形,PA=PC,PA=PC=PE,PAE=PEA,OA=OE,OAE=OEA,OEP=OAC=90,EF是O的切线;(2)AB是O的直径,AQB=90,APQBPA,=PBPQ,在AFP与CEP中,PAF=PCE,APF=
25、CPE,PA=PC,AFPCEP,PF=PE,PA=PE=EF,=4BPQP考点:切线的判定;平行四边形的性质;相似三角形的判定与性质23、(1)2400个, 10天;(2)1人【解析】(1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)(规定天数-2)=零件总数24000个”可列方程520(1+20%)+2400 (10-2)=24000
26、,解得y的值即为原计划安排的工人人数【详解】解:(1)解:设原计划每天生产零件x个,由题意得,解得x=2400,经检验,x=2400是原方程的根,且符合题意规定的天数为240002400=10(天)答:原计划每天生产零件2400个,规定的天数是10天(2)设原计划安排的工人人数为y人,由题意得,520(1+20%)+2400 (10-2)=24000,解得,y=1经检验,y=1是原方程的根,且符合题意答:原计划安排的工人人数为1人【点睛】本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验24、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法