《2023届安徽省巢湖市居巢区黄麓中心学校中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省巢湖市居巢区黄麓中心学校中考数学五模试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A10.7104B1.07105C1.7104D1.07
2、1042已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若ABP组成的三角形恰为等腰直角三角形,则b24ac的值为()A1B4C8D123下列四个多项式,能因式分解的是()Aa1Ba21Cx24yDx26x94一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球两次都摸到红球的概率是( )ABCD5下列选项中,可以用来证明命题“若a2b2,则ab“是假命题的反例是()Aa2,b1Ba3,b2Ca0,b1Da2,b16为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘
3、制成如下统计表:步数(万步)1.01.21.11.41.3天数335712在每天所走的步数这组数据中,众数和中位数分别是()A1.3,1.1B1.3,1.3C1.4,1.4D1.3,1.47已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若nm,则( )Aa0且4a+b=0Ba0且4a+b=0Ca0且2a+b=0Da0且2a+b=08在ABC中,点D、E分别在边AB、AC上,如果AD=1,BD=3,那么由下列条件能够判断DEBC的是()ABCD9光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为ABCD10下面的几何体中,主视
4、图为圆的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11已知点 M(1,2)在反比例函数的图象上,则 k_12一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0180)被称为一次操作若五次操作后,发现赛车回到出发点,则角为13计算:22()=_14已知关于x的一元二次方程kx2+3x4k+6=0有两个相等的实数根,则该实数根是_15如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_16若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是_17如图,在RtABC中,BAC=90,AB=AC=4,D是BC的中点
5、,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_三、解答题(共7小题,满分69分)18(10分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。小丽的爸爸买了两张门票,她和各个两人都想去观看,可是爸爸只能带一人去,于是读九年级的哥哥提议用他们3人吃饭的彩色筷子做游戏(筷子除颜色不同,其余均相同),其中小丽的筷子颜色是红色,哥哥的是银色,爸爸的是白色,将3人的3双款子全部放在 一个不透明的筷篓里摇匀,小丽随机从筷篓里取出一根,记下颜色放回,然后哥哥同样从筷篓里取出一根,若两人取出的筷子颜色相同则小丽去,若不同,
6、则哥哥去。(1)求小丽随机取出一根筷子是红色的概率;(2)请用列表或画树状图的方法求出小随爸爸去看新春灯会的概率。19(5分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_名,扇形统计图中“基本了解”部分所对应扇形的圆心角为_;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“
7、基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率20(8分)已知二次函数 ymx22mx+n 的图象经过(0,3)(1)n _;(2) 若二次函数 ymx22mx+n 的图象与 x 轴有且只有一个交点,求 m 值;(3) 若二次函数 ymx22mx+n 的图象与平行于 x 轴的直线 y5 的一个交点的横坐标为4,则另一个交点的坐标为 ;(4) 如图,二次函数 ymx22mx+n 的图象经过点 A(3,0)
8、,连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求PAC 面积的最大值21(10分)如图1,在长方形ABCD中,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象(1)求出a值;(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?22(10分)某校为表彰在“书香校园”活动中表现积
9、极的同学,决定购买笔记本和钢笔作为奖品已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱23(12分)如图,已知反比例函数y与一次函数yk2xb的图象交于A(1,8),B(4,m)求k1,k2,b的值;求AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y的图象上的两点
10、,且x1x2,y1y2,指出点M,N各位于哪个象限,并简要说明理由24(14分)如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C(1)求点 A 的坐标;(2)结合函数的图象,求当 y0 时,x 的取值范围参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:10700=1.07104,故选:D
11、【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、B【解析】设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到|=,然后进行化简可得到b2-1ac的值【详解】设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),则x1、x2为方程ax2+bx+c=0的两根,x
12、1+x2=-,x1x2=,AB=|x1-x2|=,ABP组成的三角形恰为等腰直角三角形,|=,=,b2-1ac=1故选B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质和等腰直角三角形的性质3、D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可试题解析:x2-6x+9=(x-3)2故选D考点:2因式分解-运用公式法;2因式分解-提公因式法4、A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红
13、(红,红)(红,红)(绿,红)(绿,绿)红(红,红)(红,红)(绿,红)(绿,红)红(红,红)(红,红)(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)所有等可能的情况数为20种,其中两次都为红球的情况有6种,故选A.5、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题由此即可解答.【详解】当a2,b1时,(2)212,但是21,a2,b1是假命题的反例故选A【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法6、B【解析】在这组数据中出现次数最多的是1.1,得到
14、这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数【详解】在这组数据中出现次数最多的是1.1,即众数是1.1要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1故选B【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求7、A【解析】由图像经过点(0,m)、(4、m)可知对称轴为x=2,由nm知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】图像经过点(0,m)、(4、m)
15、对称轴为x=2,则,4a+b=0图像经过点(1,n),且nm抛物线的开口方向向上,a0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.8、D【解析】如图,AD=1,BD=3,当时,又DAE=BAC,ADEABC,ADE=B,DEBC,而根据选项A、B、C的条件都不能推出DEBC,故选D9、C【解析】科学记数法的表示形式为的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将9500000000000km用科学记数法表示为故选C【点睛
16、】本题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C考点:简单几何体的三视图二、填空题(共7小题,每小题3分,满分21分)11、-2【解析】=1(-2)=-212、7 2或144【解析】五次操作后,发现赛车回到出发点,正好走了一个正五边形,因为原地逆时针方向旋转角a(0180),那么朝左和朝右就是两个不同的结论所以角=(5-2)1805=108,则1
17、80-108=72或者角=(5-2)1805=108,180-722=14413、1【解析】解:原式=1故答案为114、1【解析】根据二次项系数非零结合根的判别式=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解【详解】解:关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,解得:k=,原方程为x1+4x+4=0,即(x+1)1=0,解得:x=-1故答案为:-1【点睛】本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当=0时,方程有两个相等的实数根”是解题的关键15、(,1)【解析】如图作AFx轴于F
18、,CEx轴于E四边形ABCD是正方形,OA=OC,AOC=90,COE+AOF=90,AOF+OAF=90,COE=OAF,在COE和OAF中,COEOAF,CE=OF,OE=AF,A(1,),CE=OF=1,OE=AF=,点C坐标(,1),故答案为(,1)点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.16、8【解析】解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.17、
19、2 【解析】过点E作EFBC于F,根据已知条件得到BEF是等腰直角三角形,求得BEABAE6,根据勾股定理得到BFEF3,求得DFBFBD,根据勾股定理即可得到结论【详解】解:过点E作EFBC于F,BFE90,BAC90,ABAC4,BC45,BC4,BEF是等腰直角三角形,BEABAE6,BFEF3,D是BC的中点,BD2,DFBFBD,DE=2故答案为2【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键三、解答题(共7小题,满分69分)18、(1);(2).【解析】(1)直接利用概率公式计算;(2)画树状图展示所有36种等可能的结果数,再找出两
20、人取出的筷子颜色相同的结果数,然后根据概率公式求解【详解】(1)小丽随机取出一根筷子是红色的概率=;(2)画树状图为:共有36种等可能的结果数,其中两人取出的筷子颜色相同的结果数为12,所以小丽随爸爸去看新春灯会的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率19、(1)60;90;统计图详见解析;(2)300;(3)【解析】试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了
21、解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出所有等可能的情况数,找出两人打平的情况数,即可求出所求的概率试题解析:(1)根据题意得:3050%=60(名),“了解”人数为60(15+30+10)=5(名),“基本了解”占的百分比为100%=25%,占的角度为25%360=90,补全条形统计图如图所示:(2)根据题意得:900=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪 石 布剪 (剪,剪) (石,剪) (布,剪)石 (剪,石) (石,石) (布,石)布 (剪,布) (
22、石,布) (布,布)所有等可能的情况有9种,其中两人打平的情况有3种,则P=考点:1、条形统计图,2、扇形统计图,3、列表法与树状图法20、(2)2;(2)m=2;(2)(2,5);(4)当a=时,PAC的面积取最大值,最大值为【解析】(2)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解
23、析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PDx轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出SACP关于a的函数关系式,配方后即可得出PAC面积的最大值【详解】解:(2)二次函数y=mx22mx+n的图象经过(0,2),n=2故答案为2(2)二次函数y=mx22mx2的图象与x轴有且只有一个交点,=(2m)24(2)m=4m2+22m=0,解得:m2=0,m2=2m0,m=2(2)二次函数解析式为y=mx22mx2,二次函数图象的对称轴为直线x=2该二次函数图象与平行于
24、x轴的直线y=5的一个交点的横坐标为4,另一交点的横坐标为224=2,另一个交点的坐标为(2,5)故答案为(2,5)(4)二次函数y=mx22mx2的图象经过点A(2,0),0=9m6m2,m=2,二次函数解析式为y=x22x2设直线AC的解析式为y=kx+b(k0),将A(2,0)、C(0,2)代入y=kx+b,得:,解得:,直线AC的解析式为y=x2过点P作PDx轴于点D,交AC于点Q,如图所示设点P的坐标为(a,a22a2),则点Q的坐标为(a,a2),点D的坐标为(a,0),PQ=a2(a22a2)=2aa2,SACP=SAPQ+SCPQ=PQOD+PQAD=a2+a=(a)2+,当a
25、=时,PAC的面积取最大值,最大值为 【点睛】本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出SACP关于a的函数关系式21、(1)6;(2);(3)10或;【解析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相
26、距,因此由(2)可列方程【详解】(1)由图象可知,当点P在BC上运动时,APD的面积保持不变,则a秒时,点P在AB上,AP=6,则a=6;(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x6)=2x6,Q点路程总长为34cm,第6秒时已经走12cm,故点Q还剩的路程为y2=3412;(3)当P、Q两点相遇前相距3cm时,(2x6)=3,解得x=10,当P、Q两点相遇后相距3cm时,(2x6)()=3,解得x=,当x=10或时,P、Q两点相距3cm【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式
27、22、(1)笔记本单价为14元,钢笔单价为15元;(2)y1=140.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样【解析】(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得答:每个文具盒14元,每支钢笔15元(2)由题意知,y1关于x的函数关系式是y11490x,即y112.6x买钢笔10支以下(含10支)没有优惠故此时的函数关系式为y215x:当买10支以上时,超出的部分有优惠,故此时的函数关系式为y215101580(x10),即y212x1(3)因为x10,所以y212x1当y1
28、y2,即12.6x12x1时,解得x2;当y1y2,即12.6x12x1时,解得x2;当y1y2,即12.6x12x1时,解得x2综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱23、 (1) k11,b6(1)15(3)点M在第三象限,点N在第一象限【解析】试题分析:(1)把A(1,8)代入求得=8,把B(-4,m)代入求得m=-1,把A(1,8)、B(-4,-1)代入求得、b的值;(1)设直线y=1x+6与x轴的交点为C,可求得OC的长,根据SABC=SAOC+SBOC即可求得AOB的面积;(3)由可知有
29、三种情况,点M、N在第三象限的分支上,点M、N在第一象限的分支上, M在第三象限,点N在第一象限,分类讨论把不合题意的舍去即可试题解析:解:(1)把A(1,8), B(-4,m)分别代入,得=8,m=-1A(1,8)、B(-4,-1)在图象上,解得,(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,OC=3SABC=SAOC+SBOC=(3)点M在第三象限,点N在第一象限若0,点M、N在第三象限的分支上,则,不合题意;若0,点M、N在第一象限的分支上,则,不合题意;若0,M在第三象限,点N在第一象限,则0,符合题意考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质24、(1);(2)【解析】(1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标,进而求出点A即可;(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出【详解】解:(1)当时,函数的值为-2,点的坐标为 四边形为矩形,解方程,得点的坐标为点的坐标为(2)解方程,得由图象可知,当时,的取值范围是【点睛】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质