《2023届广西南宁市兴宁区中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广西南宁市兴宁区中考押题数学预测卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数y=ax2+bx+c(a1)的图象如图所示,则下列结论:a、b同号;当x=1和x=3时,函数值相等;4a+b=1;当y=2时,x的值只能取1;当1x5时,y1其中,正确的有()A2个B3个C4个D5个2如图是某个几何体的三视图,该几何体是( )A圆锥B四棱锥C圆柱D四棱柱3下列计
2、算正确的是ABCD4如图,已知ABCD中,E是边AD的中点,BE交对角线AC于点F,那么SAFE:S四边形FCDE为( )A1:3B1:4C1:5D1:65如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P若点P的坐标为(2a,b+1),则a与b的数量关系为Aa=bB2a+b=1C2ab=1D2a+b=16PM2.5是指大气中直径小于或等于2.5m(1m=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害2.5m用科学记数法可表
3、示为( )ABCD7如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则CEF的周长为( ) A12B16C18D248如图所示的几何体的俯视图是()ABCD9若代数式2x2+3x1的值为1,则代数式4x2+6x1的值为()A3B1C1D310如图,内接于,若,则ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得DCB=ACO,则D点坐标为_. 12如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是_13不等式组的最大整数
4、解为_14函数y中自变量x的取值范围是_,若x4,则函数值y_15如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_16估计无理数在连续整数_与_之间17如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_三、解答题(共7小题,满分69分)18(10分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE若DE:AC=3:5,求的值19(5分)在大课间活动中,体
5、育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分 组频数频率第一组(0x15)30.15第二组(15x30)6a第三组(30x45)70.35第四组(45x60)b0.20(1)频数分布表中a=_,b=_,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?20(8分)如图,在平面直角坐标系xOy中,
6、已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求OBC的面积.21(10分)如图,ABCD,E、F分别为AB、CD上的点,且ECBF,连接AD,分别与EC、BF相交与点G、H,若ABCD,求证:AGDH22(10分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图请根据图中提供的信息,回答下列问题:扇形统计图中a的值为 %,该扇形圆心角的度数为 ;
7、补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?23(12分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元24(14分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF求证:FCAB参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
8、根据二次函数的性质和图象可以判断题目中各个小题是否成立【详解】由函数图象可得,a1,b1,即a、b异号,故错误,x=-1和x=5时,函数值相等,故错误,-2,得4a+b=1,故正确,由图象可得,当y=-2时,x=1或x=4,故错误,由图象可得,当-1x5时,y1,故正确,故选A【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答2、B【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱故选B.【点睛】本题考查了由三视图找到几何体
9、图形,属于简单题,熟悉三视图概念是解题关键.3、C【解析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可【详解】、与不是同类项,不能合并,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误故选:【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键4、C【解析】根据AEBC,E为AD中点,找到AF与FC的比,则可知AEF面积与FCE面积的比,同时因为DEC面积=AEC面积,则可知四边形FCDE面积与AEF面积之间的关系【详解】解:连接CE,AEBC,E为AD中点, FEC面积是AEF面积的2倍设AEF面
10、积为x,则AEC面积为3x,E为AD中点,DEC面积=AEC面积=3x四边形FCDE面积为1x,所以SAFE:S四边形FCDE为1:1故选:C【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系5、B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,2a+b=1故选B6、C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数考点:用科学计数法计数7、A【解析】解:四边形ABCD为矩形,AD=BC=10,AB=CD=8,矩形ABC
11、D沿直线AE折叠,顶点D恰好落在BC边上的F处,AF=AD=10,EF=DE,在RtABF中,BF=6,CF=BC-BF=10-6=4,CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1故选A8、D【解析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中【详解】从上往下看,该几何体的俯视图与选项D所示视图一致故选D【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图9、D【解析】由2x2+1x11知2x2+1x2,代入原式2(2x2+1x)1计算可得【详解】解:2x2+1x11,2x2+1x2,则4x2+6x12(2x2+1x)12
12、21411故本题答案为:D.【点睛】本题主要考查代数式的求值,运用整体代入的思想是解题的关键10、B【解析】根据圆周角定理求出,根据三角形内角和定理计算即可【详解】解:由圆周角定理得,故选:B【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、(,),(-4,-5)【解析】求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于DCB=ACO所以tanDCB=tanACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时
13、的坐标【详解】令y=0代入y=-x2-2x+3,x=-3或x=1,OA=1,OB=3,令x=0代入y=-x2-2x+3,y=3,OC=3,当点D在x轴下方时,设直线CD与x轴交于点E,过点E作EGCB于点G,OB=OC,CBO=45,BG=EG,OB=OC=3,由勾股定理可知:BC=3,设EG=x,CG=3-x,DCB=ACOtanDCB=tanACO=,x=,BE=x=,OE=OB-BE=,E(-,0),设CE的解析式为y=mx+n,交抛物线于点D2,把C(0,3)和E(-,0)代入y=mx+n,,解得:.直线CE的解析式为:y=2x+3,联立 解得:x=-4或x=0,D2的坐标为(-4,-
14、5)设点E关于BC的对称点为F,连接FB,FBC=45,FBOB,FB=BE=,F(-3,)设CF的解析式为y=ax+b,把C(0,3)和(-3,)代入y=ax+b 解得:,直线CF的解析式为:y=x+3,联立 解得:x=0或x=-D1的坐标为(-,)故答案为(-,)或(-4,-5)【点睛】本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标12、【解析】试题解析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OMAB,且OC=MC=1,在RTAOC中,OA=2,OC=1,cosAOC=,AC=AOC=60,AB=2AC
15、=2,AOB=2AOC=120,则S弓形ABM=S扇形OAB-SAOB=,S阴影=S半圆-2S弓形ABM=22-2()=2故答案为213、1【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其最大整数解【详解】,解不等式得:x1,解不等式得x-11x,x-1x1,-x1,x-1,不等式组的解集为x-1,不等式组的最大整数解为-1.故答案为-1.【点睛】本题考查了一元一次不等式组的整数解,解题的关键是熟练的掌握一元一次不等式组的整数解.14、x3y1【解析】根据二次根式有意义的条件求解即可即被开方数是非负数,结果是x3,y
16、1.15、 【解析】由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明DGFDAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可【详解】四边形ABCD、CEFG均为正方形,CD=AD=3,CG=CE=5,DG=2,在RtDGF中, DF=,FDG+GDI=90,GDI+IDA=90,FDG=IDA又DAI=DGF,DGFDAI,即,解得:DI=,矩形DFHI的面积是=DFDI=,故答案为:【点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键16、3 4 【解析】先找到与11相邻的平方
17、数9和16,求出算术平方根即可解题.【详解】解:,无理数在连续整数3与4之间【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.17、31【解析】通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明PABQAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长【详解】如图,当Q在对角线BD上时,BQ最小连接BP,由旋转得:AP=AQ,PAQ=90,PAB+BAQ=90四边形ABCD为正方形,AB=AD,BAD=90,BAQ+DAQ=90,PAB=DAQ,PABQAD,QD=PB=1在RtABD中,AB=AD=3,由
18、勾股定理得:BD=,BQ=BDQD=31,即BQ长度的最小值为(31)故答案为31【点睛】本题是圆的综合题考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值三、解答题(共7小题,满分69分)18、【解析】根据翻折的性质可得BAC=EAC,再根据矩形的对边平行可得ABCD,根据两直线平行,内错角相等可得DCA=BAC,从而得到EAC=DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到ACF和EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在RtADF中,利用勾股定
19、理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解【详解】解:矩形沿直线AC折叠,点B落在点E处,CEBC,BACCAE,矩形对边ADBC,ADCE,设AE、CD相交于点F,在ADF和CEF中,ADFCEF(AAS),EFDF,ABCD,BACACF,又BACCAE,ACFCAE,AFCF,ACDE,ACFDEF,设EF3k,CF5k,由勾股定理得CE,ADBCCE4k,又CDDFCF3k5k8k,ABCD8k,AD:AB(4k):(8k)【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出ACF和DEF相似是解题
20、的关键,也是本题的难点19、0.3 4 【解析】(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案【详解】(1)a=10.150.350.20=0.3;总人数为:30.15=20(人),b=200.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180(0.35+0.20)=99(人);(3)画树状图得:共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况
21、,所选两人正好都是甲班学生的概率是:=【点睛】本题考查了列表法或树状图法求概率以及条形统计图的知识用到的知识点为:概率=所求情况数与总情况数之比20、(1)A(4,3);(2)28.【解析】(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在RtOAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得OBC的面积.【详解】解:(1)由题意得: ,解得,点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D, 在RtOAD中,由勾股定理得,
22、.P(a,0),B(a,),C(a,-a+7),BC=,解得a=8.21、证明见解析.【解析】【分析】利用AAS先证明ABHDCG,根据全等三角形的性质可得AH=DG,再根据AHAGGH,DGDHGH即可证得AGHD.【详解】ABCD,AD,CEBF,AHBDGC,在ABH和DCG中,ABHDCG(AAS),AHDG,AHAGGH,DGDHGH,AGHD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.22、(1)25, 90;(2)见解析;(3)该市 “活动时间不少于5天”的大约有1【解析】试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360即
23、得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90;(2)“活动时间为6天” 的人数,如图所示:(3)“活动时间不少于5天”的学生人数占75%,2000075%=1该市“活动时间不少于5天”的大约有1人考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.23、 (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元【解析】(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成
24、方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案【详解】解:(1)设该车间应安排x天加工童装,y天加工成人装,由题意得:,解得:,答:该车间应安排4天加工童装,6天加工成人装;(2)454=180,306=180,18080+180120=180(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元【点睛】本题考查二元一次方程组的应用24、答案见解析【解析】利用已知条件容易证明ADECFE,得出角相等,然后利用平行线的判定可以证明FCAB【详解】解:E是AC的中点,AE=CE在ADE与CFE中,AE=EC,AED=CEF,DE=EF,ADECFE(SAS),EAD=ECF,FCAB【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定定理通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用