《2023届广东省汕头市澄海区中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省汕头市澄海区中考三模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).A众数B中位数C平均数D方差2下列运算正确的是()A5abab=4Ba6a2=a4CD(a2b)3=a5b33一元二次方程4x22x+=0的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C没有实数根D无法判断4二次函数的对称轴是 A直线B直线Cy轴Dx轴5下列各运算中,计算正确的是( )ABCD6如图,直线y=x+3交x轴于A点,将一块等腰直
3、角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tanAON的值为()ABCD7下列计算正确的是()A3a2a1Ba2+a5a7C(ab)3ab3Da2a4a68最小的正整数是()A0 B1 C1 D不存在9如图,等边ABC的边长为1cm,D、E分别AB、AC是上的点,将ADE沿直线DE折叠,点A落在点A处,且点A在ABC外部,则阴影部分的周长为()cmA1B2C3D410二次函数yax2+c的图象如图所示,正比例函数yax与反比例函数y在同一坐标系中的图象可能是()ABCD二、填空题(共7小题,每小题3分,满分21分)11在RtABC内有边长分
4、别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_12唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:分数(单位:分)10090807060人数14212则这10名学生的数学成绩的中位数是_分13如图,在ABC中,BABC4,A30,D是AC上一动点,AC的长_;BD+DC的最小值是_14如图,在RtABC中,C=90,AC=8,BC=1在边AB上取一点O,使BO=BC,以点O为旋转中心,把ABC逆时针旋转90,得到ABC(点A、B、C的对应点分别是点A、B、C、),那么ABC与ABC的重叠部分的面积是_15已知一元二次方程x24x30的两
5、根为m,n,则mn= 16如图,已知矩形ABCD中,点E是BC边上的点,BE2,EC1,AEBC,DFAE,垂足为F则下列结论:ADFEAB;AFBE;DF平分ADC;sinCDF其中正确的结论是_(把正确结论的序号都填上)17分解因式:(x22x)2(2xx2)_三、解答题(共7小题,满分69分)18(10分)如图,二次函数y+mx+4m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C抛物线的对称轴是直线x2,D是抛物线的顶点(1)求二次函数的表达式;(2)当x1时,请求出y的取值范围;(3)连接AD,线段OC上有一点E,点E关于直线x2的对称点E恰好在线段AD上,求点E的坐标1
6、9(5分)解不等式组并写出它的整数解20(8分)解不等式组:,并把解集在数轴上表示出来21(10分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(1,0)(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PEy轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当BQE+DEQ=90时,
7、求此时点P的坐标22(10分)如果想毁掉一个孩子,就给他一部手机!这是2017年微信圈一篇热传的文章国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图,的统计图,已知“查资料”的人数是40人请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为 ,圆心角度数是 度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数23(12分)服装店准备购进甲乙两种服装,甲种每件进
8、价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0an)(5)零次幂:(a0)(6) 负整数次幂: (a0, p是正整数).3、B【解析】试题解析:在方程4x22x+ =0中,=(2)244 =0,一元二次方程4x22x+=0有两个相等的实数根故选B考点:根的判别式4、C【解析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案【详解】解:二次函数y=x2的对称轴为y轴
9、故选:C 【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k)5、D【解析】利用同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则以及完全平方公式即可判断【详解】A、,该选项错误;B、,该选项错误;C、,该选项错误;D、,该选项正确;故选:D【点睛】本题考查了同底数幂的乘法、除法法则,幂的乘方法则以及完全平方公式,正确理解法则是关键6、A【解析】过O作OCAB于C,过N作NDOA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AOOB=ABOC,代
10、入求出OC,根据sin45=,求出ON,在RtNDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tanAON=求出即可【详解】过O作OCAB于C,过N作NDOA于D,N在直线y=x+3上,设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,A(-4,0),B(0,3),即OA=4,OB=3,在AOB中,由勾股定理得:AB=5,在AOB中,由三角形的面积公式得:AOOB=ABOC,34=5OC,OC=,在RtNOM中,OM=ON,MON=90,MNO=45,sin45=,ON=,在RtNDO中,由
11、勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,N在第二象限,x只能是-,x+3=,即ND=,OD=,tanAON=故选A【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强7、D【解析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【详解】3a2aa,选项A不正确;a2+a5a7,选项B不正确;(ab)3a3b3,选项C不正确;a2a4a6,选项D正确故选D【点睛】本题考查了合并同类项法则、积的乘方及同底数
12、幂的乘法的运算法则,熟练运用法则是解决问题的关键.8、B【解析】根据最小的正整数是1解答即可【详解】最小的正整数是1故选B【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答9、C【解析】由题意得到DADA,EAEA,经分析判断得到阴影部分的周长等于ABC的周长即可解决问题【详解】如图,由题意得:DADA,EAEA,阴影部分的周长DAEADBCEBGGFCF(DABD)(BGGFCF)(AECE)ABBCAC1113(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.10、C【解析】根据二次函数图像位
13、置确定a0,c0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a0,c0,正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】解:如图在RtABC中(C=90),放置边长分别2,3,x的三个正方形,CEFOMEPFN,OE:PN=OM:PFEF=x,MO=2,PN=3,OE=x2,PF=x3,(x2):3=2:(x3),x=0(不符合题意,舍去),x=1故答案为1点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的
14、关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键12、1【解析】根据中位数的概念求解即可【详解】这组数据按照从小到大的顺序排列为:60,60,70,80,80,90,90,90,90,100,则中位数为:=1故答案为:1【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数13、()AC4 ()4,2. 【解析】()如图,过B作BEAC于E,根据等腰三角形的性质和解直角三角形即可得到结论;()如图,作BC的垂直平分线交AC于D,
15、则BDCD,此时BD+DC的值最小,解直角三角形即可得到结论【详解】解:()如图,过B作BEAC于E,BABC4,AECE,A30,AEAB2,AC2AE4;()如图,作BC的垂直平分线交AC于D,则BDCD,此时BD+DC的值最小,BFCF2,BDCD ,BD+DC的最小值2,故答案为:4,2【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键14、【解析】先求得OD,AE,DE的值,再利用S四边形ODEF=SAOF-SADE即可.【详解】如图,OA=OA=4,则OD=OA=3,OD=3AD=1,可得DE=,AE =S四边形ODEF=SAOF-
16、SADE=34-=.故答案为.【点睛】本题考查的知识点是三角形的旋转,解题的关键是熟练的掌握三角形的旋转.15、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=3,将所求式子利用完全平方公式变形后,即mn+=3mn=16+9=1故答案为1考点:根与系数的关系16、【解析】只要证明EABADF,CDF=AEB,利用勾股定理求出AB即可解决问题【详解】四边形ABCD是矩形,AD=BC,ADBC,B=90,BE=2,EC=1,AE=AD=BC=3,AB=,ADBC,DAF=AEB,DFAE,AFD=B=90,EABADF,AF=BE=2,DF=AB=,故正确,不妨
17、设DF平分ADC,则ADF是等腰直角三角形,这个显然不可能,故错误,DAF+ADF=90,CDF+ADF=90,DAF=CDF,CDF=AEB,sinCDF=sinAEB=,故错误,故答案为【点睛】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型17、x(x2)(x1)2【解析】先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解【详解】 解:(x22x)2(2xx2) =(x22x)2+(x22x) =(x22x)(x22x+1) =
18、x(x2)(x1)2故答案为x(x2)(x1)2【点睛】此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.三、解答题(共7小题,满分69分)18、(1)y=x11x+6;(1)y;(3)(0,4)【解析】(1)利用对称轴公式求出m的值,即可确定出解析式;(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可【详解】(1)抛物线对称轴为直线x=1,=1,即m=1,则二次函数解析式为y=x11x+6;(1)当x=时,y=;当x=1时,y=x1位于对称轴右侧,y随x的增大而减小,
19、y;(3)当x=1时,y=8,顶点D的坐标是(1,8),令y=0,得到:x11x+6=0,解得:x=6或x=1点A在点B的左侧,点A坐标为(6,0)设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11设E(0,n),则有E(4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4)【点睛】本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键19、不等式组的解集是5x1,整数解是6,1【解析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【详解】解得:x5,解不等式得:x1,不等式组的解集是5x1,不等式组的整
20、数解是6,1【点睛】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法20、无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集试题解析:由得x4,由得x1,原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集21、(1)y=x2+2x+3;(2)d=t2+4t3;(3)P(,)【解析】(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;(2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解
21、析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=2x+6,则E(t,2t+6),P(t,t2+2t+3),PH=t2+2t+3,EH=2t+6,再根据d=PHEH即可得答案;(3)首先,作DKOC于点K,作QMx轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ERDK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明DQTECH,再根据全等三角形的性质即可得ME=42(2t+6),QM= t1+(3t),即可求得答案【详解】解:(1)当x=0时,y=3,A(0,3)即OA=3,OA=OC,OC=3,C(3,0),抛物线y=ax2+bx+3经过点B(1,0),
22、C(3,0),解得:,抛物线的解析式为:y=x2+2x+3;(2)如图1,延长PE交x轴于点H,y=x2+2x+3=(x1)2+4,D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得: ,解得:,y=2x+6,E(t,2t+6),P(t,t2+2t+3),PH=t2+2t+3,EH=2t+6,d=PHEH=t2+2t+3(2t+6)=t2+4t3;(3)如图2,作DKOC于点K,作QMx轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ERDK于点R,记QE与DK的交点为N,D(1,4),B(1,0),C(3,0),BK=2,KC=2,DK垂直平分BC
23、,BD=CD,BDK=CDK,BQE=QDE+DEQ,BQE+DEQ=90,QDE+DEQ+DEQ=90,即2CDK+2DEQ=90,CDK+DEQ=45,即RNE=45,ERDK,NER=45,MEQ=MQE=45,QM=ME,DQ=CE,DTQ=EHC、QDT=CEH,DQTECH,DT=EH,QT=CH,ME=42(2t+6),QM=MT+QT=MT+CH=t1+(3t),42(2t+6)=t1+(3t),解得:t=,P(,)【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.22、(1)35%,126;(2)见解析;(3)1344人【解析】(1)由扇形统计图
24、其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果【详解】(1)根据题意得:1(40%+18%+7%)35%,则“玩游戏”对应的圆心角度数是36035%126,故答案为35%,126;(2)根据题意得:4040%100(人),3小时以上的人数为100(2+16+18+32)32(人),补全图形如下:;(3)根据题意得:21001344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人【点睛】本题考查了条形统计图,扇形统计图,以及用样本
25、估计总体,准确识图,从中找到必要的信息进行解题是关键.23、(1)甲种服装最多购进75件,(2)见解析.【解析】(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案【详解】(1)设购进甲种服装x件,由题意可知:80x+60(100-x)7500,解得x75答:甲种服装最多购进75件,(2)设总利润为W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1当0a10时,10-a0,W随x增大而增大,当x=7
26、5时,W有最大值,即此时购进甲种服装75件,乙种服装25件;当a=10时,所以按哪种方案进货都可以;当10a20时,10-a0,W随x增大而减小当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件【点睛】本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键24、(1)见解析;(2)见解析;(3)AG1【解析】(1)利用垂径定理、平行的性质,得出OCCG,得证CG是O的切线.(2)利用直径所对圆周角为和垂直的条件得出2=B,再根据等弧所对的圆周角相等得出1=B,进而证得1=2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,C是劣弧AE的中点,OCAE,CGAE,CGOC,CG是O的切线;(2)证明:连结AC、BC,AB是O的直径,ACB90,2+BCD90,而CDAB,B+BCD90,B2,C是劣弧AE的中点,,1B,12,AFCF;(3)解:CGAE,FADG,sinG0.6,sinFAD0.6,CDA90,AFCF4,DF2.4,AD3.2,CDCF+DF6.4,AFCG,, DG,AGDGAD1【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.