《2023届广西昭平县重点中学毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广西昭平县重点中学毕业升学考试模拟卷数学卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是( )A众数、中位数B平均数、中位数C平均数、方差D中位数、方差2若点A(1,a)和点B(4,b)在直线y2xm上,则a与b的大小
2、关系是()AabBabCabD与m的值有关3如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.下列判断: 当x2时,M=y2;当x0时,x值越大,M值越大;使得M大于4的x值不存在;若M=2,则x= 1 .其中正确的有 A1个B2个C3个D4个4如果边长相等的正五边形和正方形的一边重合,那么1的度数是( )A30B15C18D205平面直角坐标系中的点P(2m,m)在第一象限,则m的取值范围在数轴上可表示为( )ABCD6如图,O是ABC的外接圆,AD是O的直径,连接CD,若O的半径r=
3、5,AC=5 ,则B的度数是( )A30 B45 C50 D607若代数式,则M与N的大小关系是( )ABCD8如图,直线被直线所截,下列条件中能判定的是( )ABCD9已知:如图是yax2+2x1的图象,那么ax2+2x10的根可能是下列哪幅图中抛物线与直线的交点横坐标()ABCD10若关于x的一元二次方程(k1)x24x10有两个不相等的实数根,则k的取值范围是( )Ak5Bk511如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解,则t的取值范围是( ) A-5t4B3t4C-5t-512如图,AB是O的直径,D
4、,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使ADC与BDA相似,可以添加一个条件下列添加的条件中错误的是( ) AACDDABBADDECADABCDBDDAD2BDCD二、填空题:(本大题共6个小题,每小题4分,共24分)13计算:2(ab)3b_14若a:b=1:3,b:c=2:5,则a:c=_.15若正n边形的内角为,则边数n为_.16如果一个正多边形的中心角为72,那么这个正多边形的边数是 17从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是_18如图,直线a、b相交于点O,若
5、1=30,则2=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,O是ABC的外接圆,AB为直径,ODBC交O于点D,交AC于点E,连接AD、BD、CD(1)求证:ADCD;(2)若AB10,OE3,求tanDBC的值20(6分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元 若该公司
6、当月卖出3部汽车,则每部汽车的进价为 万元; 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)21(6分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点求反比例函数和一次函数的解析式;直接写出当x0时,的解集点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小22(8分)如图,点E,F在BC上,BECF,AD,BC,AF与DE交于点O求证:ABDC;试判断OEF的形状,并说明理由23(8分)如图,在ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作C的平分线CF,交AD于点F(保
7、留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长24(10分)如图,在RtABC中,C90,以BC为直径的O交AB于点D,过点D作O的切线DE交AC于点E(1)求证:AADE;(2)若AB25,DE10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S(用含字母a的式子表示)25(10分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图(1)测试不合格人数的中位数是 (2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率
8、;(3)在(2)的条件下补全条形统计图和扇形统计图26(12分)实践:如图ABC是直角三角形,ACB90,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.综合运用:在你所作的图中,AB与O的位置关系是_ .(直接写出答案)若AC=5,BC=12,求O 的半径.27(12分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:()若商场预计进货款为元,则这两种台灯各购进多少盏?()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多
9、少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键2、A【解析
10、】【分析】根据一次函数性质:中,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小.由-2y2.【详解】因为,点A(1,a)和点B(4,b)在直线y2xm上,-20,所以,y随x的增大而减小.因为,1b.故选A【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.3、B【解析】试题分析:当y1=y2时,即时,解得:x=0或x=2,由函数图象可以得出当x2时, y2y1;当0x2时,y1y2;当x0时, y2y1错误当x0时, -直线的值都随x的增大而增大,当x0时,x值越大,M值越大正确抛物线的最大值为4,M大于4的x值不存在正确;当0x2
11、时,y1y2,当M=2时,2x=2,x=1;当x2时,y2y1,当M=2时,解得(舍去)使得M=2的x值是1或错误综上所述,正确的有2个故选B4、C【解析】1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解【详解】正五边形的内角的度数是(5-2)180=108,正方形的内角是90,1=108-90=18故选C【点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键5、B【解析】根据第二象限中点的特征可得: ,解得: .在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征6、D【解析】根据圆周角
12、定理的推论,得B=D根据直径所对的圆周角是直角,得ACD=90在直角三角形ACD中求出D 则sinD=D=60B=D=60故选D“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边7、C【解析】,.故选C.8、C【解析】试题解析:A、由3=2=35,1=55推知13,故不能判定ABCD,故本选项错误;B、由3=2=45,1=55推知13,故不能判定ABCD,故本选项错误;C、由3=2=55,1=55推知1=3,故能判定ABCD,故本选项正确;D、由3=2=125,1=55推知13,故不能判定ABCD,故本选项错误;故选C9、C【解析】由原抛物线与x轴的交
13、点位于y轴的两端,可排除A、D选项;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;C、抛物线y=ax2与直线y=2x+1的交点,即交点的横坐标为方程ax2+2x1=0的根,C符合题意此题得解【详解】抛物线y=ax2+2x1与x轴的交点位于y轴的两端,A、D选项不符合题意;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B选项不符合题意;C、图中交点的横坐标为方程ax2+2x1=0的根(抛物线y=ax2与直线y=2x+1的交点),C选项符合题意故选:C【点睛】本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个
14、选项中的图形是解题的关键10、B【解析】试题解析:关于x的一元二次方程方程有两个不相等的实数根,即,解得:k5且k1故选B11、B【解析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1x3的范围内有公共点可确定t的范围【详解】 抛物线y=-x2+mx的对称轴为直线x=2, , 解之:m=4, y=-x2+4x, 当x=2时,y=-4+8=4, 顶点坐标为(2,4), 关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解, 当x=
15、1时,y=-1+4=3, 当x=2时,y=-4+8=4, 3t4, 故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质12、D【解析】解:ADC=ADB,ACD=DAB,ADCBDA,故A选项正确;AD=DE, ,DAE=B,ADCBDA,故B选项正确;AD2=BDCD,AD:BD=CD:AD,ADCBDA,故C选项正确;CDAB=ACBD,CD:AC=BD:AB,但ACD=ABD不是对应夹角,故D选项错误,故选:D考点:1圆周角定理2相似三角形的判定二、填空题:(本大题
16、共6个小题,每小题4分,共24分)13、2a+b【解析】先去括号,再合并同类项即可得出答案【详解】原式=2a-2b+3b=2a+b故答案为:2a+b14、21【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(12):(32)=2:6;而b、c的比为:2:5=(23):(53)=6:1;,所以a、c两数的比为2:1详解:a:b=1:3=(12):(32)=2:6;b:c=2:5=(23):(53)=6:1;,所以a:c=2:1;故答案为2:1点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比15、9【解
17、析】分析:根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.详解:由题意可得:140n=180(n-2),解得:n=9.故答案为:9.点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).16、5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念17、【解析】根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与
18、总情况数的比.18、30【解析】因1和2是邻补角,且1=30,由邻补角的定义可得2=1801=18030=150解:1+2=180,又1=30,2=150三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)tanDBC【解析】(1)先利用圆周角定理得到ACB90,再利用平行线的性质得AEO90,则根据垂径定理得到,从而有ADCD;(2)先在RtOAE中利用勾股定理计算出AE,则根据正切的定义得到tanDAE的值,然后根据圆周角定理得到DACDBC,从而可确定tanDBC的值【详解】(1)证明:AB为直径,ACB90,ODBC,AEOACB9
19、0,OEAC,ADCD;(2)解:AB10,OAOD5,DEODOE532,在RtOAE中,AE4,tanDAE,DACDBC,tanDBC【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.20、解:(1)22.1(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21270.1(x1)=(0.1x0.9)(万元),当0x10,根据题意,得x(0.1x0.9)0.3x=12,整理,得x214x120=0,解这个方程,得x1=20(不合题意,舍去),x2=2当x10时,根据题意,得x(0.1x0.9)x=12,整理,得x219x120=0,解这个方程,得
20、x1=24(不合题意,舍去),x2=3310,x2=3舍去答:要卖出2部汽车【解析】一元二次方程的应用(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:270.12=22.1,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0x10,以及当x10时,分别讨论得出即可21、(1),yx+5;(2)0x1或x4;(3)P的坐标为(,0),见解析.【解析】(1)把A(1,4)代入y,求出m4,把B(4,n)代入y,求出n1,然后把把A(1,4)、(4,1)代入ykx
21、+b,即可求出一次函数解析式;(2)根据图像解答即可;(3)作B关于x轴的对称点B,连接AB,交x轴于P,此时PA+PBAB最小,然后用待定系数法求出直线AB的解析式即可.【详解】解:(1)把A(1,4)代入y,得:m4,反比例函数的解析式为y;把B(4,n)代入y,得:n1,B(4,1),把A(1,4)、(4,1)代入ykx+b,得:,解得:,一次函数的解析式为yx+5;(2)根据图象得当0x1或x4,一次函数yx+5的图象在反比例函数y的下方;当x0时,kx+b的解集为0x1或x4;(3)如图,作B关于x轴的对称点B,连接AB,交x轴于P,此时PA+PBAB最小,B(4,1),B(4,1)
22、,设直线AB的解析式为ypx+q,解得,直线AB的解析式为,令y0,得,解得x,点P的坐标为(,0)【点睛】本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.22、(1)证明略(2)等腰三角形,理由略【解析】证明:(1)BECF,BEEFCFEF, 即BFCE 又AD,BC,ABFDCE(AAS), ABDC (2)OEF为等腰三角形 理由如下:ABFDCE,AFB=DECOE=OFOEF为等腰三角形23、 (1)见解析;(1)1【解析】(1)根
23、据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为ABD的中位线可得【详解】(1)如图,射线CF即为所求;(1)CAD=CDA,AC=DC,即CAD为等腰三角形;又CF是顶角ACD的平分线,CF是底边AD的中线,即F为AD的中点,E是AB的中点,EF为ABD的中位线,EF=BD=1【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键24、(1)见解析;(2)75a.【解析】(1)连接CD,求出ADC=90,根据切线长定理求出DE=EC,即可求出答案;(2)连接CD、OD、OE,求出扇形DOC的面积,分别
24、求出ODE和OCE的面积,即可求出答案【详解】(1)证明:连接DC,BC是O直径,BDC=90,ADC=90,C=90,BC为直径,AC切O于C,过点D作O的切线DE交AC于点E,DE=CE,EDC=ECD,ACB=ADC=90,A+ACD=90,ADE+EDC=90,A=ADE;(2)解:连接CD、OD、OE,DE=10,DE=CE,CE=10,A=ADE,AE=DE=10,AC=20,ACB=90,AB=25,由勾股定理得:BC=15,CO=OD=,的长度是a,扇形DOC的面积是a=a,DE、EC和弧DC围成的部分的面积S=10+10a=75a【点睛】本题考查了圆周角定理,切线的性质,切线
25、长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键25、(1)1;(2)这两次测试的平均增长率为20%;(3)55%【解析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数参加测试的总人数100%即可求出不合格率,进而可求出
26、合格率,再将条形统计图和扇形统计图补充完整,此题得解【详解】解:(1)将四次测试结果排序,得:30,40,50,60,测试不合格人数的中位数是(40+50)21故答案为1;(2)每次测试不合格人数的平均数为(60+40+30+50)41(人),第四次测试合格人数为121872(人)设这两次测试的平均增长率为x,根据题意得:50(1+x)272,解得:x10.220%,x22.2(不合题意,舍去),这两次测试的平均增长率为20%;(3)50(1+20%)60(人),(60+40+30+50)(38+60+50+40+60+30+72+50)100%1%,11%55%补全条形统计图与扇形统计图如解
27、图所示【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据26、(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)O 的半径为.【解析】综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与O的位置关系是相切;(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可【详解】(1)作BAC的平分线,交BC于点O;以O为圆心
28、,OC为半径作圆AB与O的位置关系是相切(2)相切;AC=5,BC=12,AD=5,AB=13,DB=AB-AD=13-5=8,设半径为x,则OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=答:O的半径为【点睛】本题考查了1作图复杂作图;2角平分线的性质;3勾股定理;4切线的判定27、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自
29、变量的取值范围可确定获利最多时的方案试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100x)盏,根据题意得,30x+50(100x)=3500,解得x=75,所以,10075=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(4530)x+(7050)(100x),=15x+200020x,=5x+2000,B型台灯的进货数量不超过A型台灯数量的3倍,100x3x,x25,k=50,x=25时,y取得最大值,为525+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元考点:1一元一次方程的应用;2一次函数的应用