《2023届广东省东莞市寮步宏伟初级中学中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省东莞市寮步宏伟初级中学中考二模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()ABCD2如图,将ABC绕点B顺时针旋转60得DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()
2、AADBCBDAC=ECBCDEDAD+BC=AE3关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D-4下列运算正确的是( )Aa3a2=a6B(2a)3=6a3C(ab)2=a2b2D3a2a2=2a25如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且ABCGEF;弯道为以点O为圆心的一段弧,且,所对的圆心角均为90甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示结合题目信息,下列说法错误的是()A甲车在立交
3、桥上共行驶8sB从F口出比从G口出多行驶40mC甲车从F口出,乙车从G口出D立交桥总长为150m6如图是某零件的示意图,它的俯视图是()ABCD7已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A3B5C1或3D1或58如图,O的半径为1,ABC是O的内接三角形,连接OB、OC,若BAC与BOC互补,则弦BC的长为()AB2C3D1.59如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则SDEF:SABF=( )A2:3B4:9C2:5D4:2510如图,将ABC绕点A逆时针旋转一定角度,得到ADE,若CA
4、E=65,E=70,且ADBC,BAC的度数为( )A60 B75C85D90二、填空题(本大题共6个小题,每小题3分,共18分)11已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1x2时,y1与y2的大小关系为_.12二次函数y(x2m)2+1,当mxm+1时,y随x的增大而减小,则m的取值范围是_13如图,在矩形ABCD中,AB=2,AD=6,EF分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为_14
5、分解因式:(x22x)2(2xx2)_15已知抛物线yx2mx2m,在自变量x的值满足1x2的情况下若对应的函数值y的最大值为6,则m的值为_.16不等式组的解是_.三、解答题(共8题,共72分)17(8分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”(1)概念理解:如图1,在ABC中,AC6,BC3,ACB30,试判断ABC是否是”等高底”三角形,请说明理由(1)问题探究:如图1,ABC是“等高底”三角形,BC是”等底”,作ABC关于BC所在直线的对称图形得到ABC,连结AA交直线BC于点D若点B是AAC的重心,求的值(3
6、)应用拓展:如图3,已知l1l1,l1与l1之间的距离为1“等高底”ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍将ABC绕点C按顺时针方向旋转45得到ABC,AC所在直线交l1于点D求CD的值18(8分)如图,圆内接四边形ABCD的两组对边延长线分别交于E、F,AEB、AFD的平分线交于P点求证:PEPF19(8分)如图,在RtABC中,C90,AD平分BAC交BC于点D,O为AB上一点,经过点A,D的O分别交AB,AC于点E,F,连接OF交AD于点G求证:BC是O的切线;设ABx,AFy,试用含x,y的代数式表示线段AD的长;若BE8,sinB,求DG的长,20(
7、8分)先化简,再求值:2(m1)2+3(2m+1),其中m是方程2x2+2x1=0的根21(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90,B=E=30. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60,点D是其角平分线上一点,BD=CD=4,OEAB交B
8、C于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长22(10分)如图,ABC中,A=90,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60得到点E,连接CE.(1)当点E在BC边上时,画出图形并求出BAD的度数;(2)当CDE为等腰三角形时,求BAD的度数;(3)在点D的运动过程中,求CE的最小值. (参考数值:sin75=, cos75=,tan75=)23(12分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个
9、小球号码之和等于4的概率24如图,在平行四边形ABCD中,过点A作AEDC,垂足为点E,连接BE,点F为BE上一点,连接AF,AFE=D(1)求证:BAF=CBE;(2)若AD=5,AB=8,sinD=求证:AF=BF参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】画树状图列出所有等可能结果,从中确定出甲、乙两位游客恰好从同一个入口进入公园的结果数,再利用概率公式计算可得【详解】画树状图如下:由树状图知共有16种等可能结果,其中甲、乙两位游客恰好从同一个入口进入公园的结果有4种,所以甲、乙两位游客恰好从同一个入口进入公园的概率为=,故选B【点睛】本题考查了列表法与树状图法:
10、利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率2、C【解析】利用旋转的性质得BA=BD,BC=BE,ABD=CBE=60,C=E,再通过判断ABD为等边三角形得到AD=AB,BAD=60,则根据平行线的性质可判断ADBC,从而得到DAC=C,于是可判断DAC=E,接着利用AD=AB,BE=BC可判断AD+BC=AE,利用CBE=60,由于E的度数不确定,所以不能判定BCDE【详解】ABC绕点B顺时针旋转60得DBE,点C的对应点E恰好落在AB的延长线上,BA=BD,BC=BE,ABD=CBE=60,C=E,ABD为等边三角形
11、,AD=AB,BAD=60,BAD=EBC,ADBC,DAC=C,DAC=E,AE=AB+BE,而AD=AB,BE=BC,AD+BC=AE,CBE=60,只有当E=30时,BCDE故选C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等边三角形的性质3、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时
12、,y随x的增大而减小4、D【解析】试题分析:根据同底数幂相乘,底数不变指数相加求解求解;根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;根据完全平方公式求解;根据合并同类项法则求解解:A、a3a2=a3+2=a5,故A错误;B、(2a)3=8a3,故B错误;C、(ab)2=a22ab+b2,故C错误;D、3a2a2=2a2,故D正确故选D点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键5、C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.B.3段弧的
13、长度都是:从F口出比从G口出多行驶40m,正确.C.分析图2可知甲车从G口出,乙车从F口出,故错误.D.立交桥总长为:故正确.故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键.6、C【解析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【点睛】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.7、A【解析】分析:根据点A(a2,4)和B(3,2a2)到x轴的距离相等,得到4|2a2|,即可解答详解:点A(a2
14、,4)和B(3,2a2)到x轴的距离相等,4|2a2|,a23,解得:a3,故选A点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数8、A【解析】分析:作OHBC于H,首先证明BOC=120,在RtBOH中,BH=OBsin60=1,即可推出BC=2BH=,详解:作OHBC于HBOC=2BAC,BOC+BAC=180,BOC=120,OHBC,OB=OC,BH=HC,BOH=HOC=60,在RtBOH中,BH=OBsin60=1,BC=2BH=.故选A点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线
15、9、D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出DEFBAF,从而DE:AB=DE:DC=2:5,所以SDEF:SABF=4:25试题解析:四边形ABCD是平行四边形,ABCD,BA=DCEAB=DEF,AFB=DFE,DEFBAF,DE:AB=DE:DC=2:5,SDEF:SABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质10、C【解析】试题分析:根据旋转的性质知,EAC=BAD=65,C=E=70如图,设ADBC于点F则AFB=90,在RtABF中,B=90-BAD=25,在ABC中,BAC=180-B-C=180-25-7
16、0=85,即BAC的度数为85故选C考点: 旋转的性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、y1y1【解析】分析:直接利用一次函数的性质分析得出答案详解:直线经过第一、二、四象限,y随x的增大而减小,x1x1,y1与y1的大小关系为:y1y1故答案为:点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键12、m1【解析】由条件可知二次函数对称轴为x=2m,且开口向上,由二次函数的性质可知在对称轴的左侧时y随x的增大而减小,可求得m+12m,即m1故答案为m1点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y随x的增大而减小
17、是解题的关键13、1或12【解析】当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值【详解】解:如图1所示:由翻折的性质可知PF=CF=1,ABFE为正方形,边长为2,AF=2PA=12如图2所示:由翻折的性质可知PF=FC=1ABFE为正方形,BE为AF的垂直平分线AP=PF=1故答案为:1或12【点睛】本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键14、x(x2)(x1)
18、2【解析】先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解【详解】 解:(x22x)2(2xx2) =(x22x)2+(x22x) =(x22x)(x22x+1) =x(x2)(x1)2故答案为x(x2)(x1)2【点睛】此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.15、m=8或【解析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在1x2时,随的增大而减小,在时取得最大值,即 解得符合题意.当即时,抛物线在1x2时,在时取得最大值,即 无解.当
19、,即时,抛物线在1x2时,随的增大而增大,在时取得最大值,即 解得符合题意.综上所述,m的值为8或故答案为:8或【点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.16、【解析】分别求出各不等式的解集,再求出其公共解集即可【详解】 解不等式,得x1,解不等式,得x1,所以不等式组的解集是1x1,故答案是:1x1【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)三、解答题(共8题,共72分)17、(1)ABC是“等高底”三角形;(1);(3)CD的值为,1,1 【解析】(1)过A作ADBC于D,则ADC是直角三角形,AD
20、C=90,根据30所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.(1)点B是的重心,得到设 则 根据勾股定理可得即可求出它们的比值.(3)分两种情况进行讨论:当时和当时.【详解】(1)ABC是“等高底”三角形;理由:如图1,过A作ADBC于D,则ADC是直角三角形,ADC=90,ACB=30,AC=6, AD=BC=3,即ABC是“等高底”三角形;(1)如图1,ABC是“等高底”三角形,BC是“等底”, ABC关于BC所在直线的对称图形是 ,ADC=90,点B是的重心, 设 则 由勾股定理得 (3)当时,如图3,作AEBC于E,DFAC于F,“等高底”ABC的“等底”为B
21、C,l1l1,l1与l1之间的距离为1,. BE=1,即EC=4, ABC绕点C按顺时针方向旋转45得到ABC,DCF=45,设 l1l1, 即 如图4,此时ABC等腰直角三角形,ABC绕点C按顺时针方向旋转45得到,是等腰直角三角形, 当时,如图5,此时ABC是等腰直角三角形,ABC绕点C按顺时针方向旋转45得到ABC, 如图6,作于E,则 ABC绕点C按顺时针方向旋转45,得到时,点A在直线l1上,l1,即直线与l1无交点,综上所述,CD的值为【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.18、证明见解析.【解
22、析】由圆内接四边形ABCD的两组对边延长线分别交于E、F,AEB、AFD的平分线交于P点,继而可得EM=EN,即可证得:PEPF【详解】四边形内接于圆,平分,平分,【点睛】此题考查了圆的内接多边形的性质以及圆周角定理此题难度不大,注意掌握数形结合思想的应用19、 (1)证明见解析;(2)AD=;(3)DG=【解析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例
23、,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sinAEF=sinB,进而求出DG的长即可【详解】(1)如图,连接OD,AD为BAC的角平分线,BAD=CAD,OA=OD,ODA=OAD,ODA=CAD,ODAC,C=90,ODC=90,ODBC,BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,FDC=DAF,CDA=CFD,AFD=ADB,BAD=DAF,ABDADF,即AD2=ABAF=xy,则AD= ;(3)连接EF,在RtBOD中,sinB=,设圆的半径为r,可得,解得:
24、r=5,AE=10,AB=18,AE是直径,AFE=C=90,EFBC,AEF=B,sinAEF=,AF=AEsinAEF=10=,AFOD,即DG=AD,AD=,则DG=【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键20、2m2+2m+5;1;【解析】先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可【详解】解:原式=2(m22m+1)+1m+3,=2m24m+2+1m+3=2m2+2m+5,m是方程2x2+2x1=0的根,2m2+2m1=0,即2m
25、2+2m=1,原式=2m2+2m+5=1【点睛】此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.21、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90,B=DCE=30,DAC=CDE=20ADC是等边三角形DCA=20DCA=CDE=20DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90,B =30AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延
26、长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90,DCM+BCN=180-90=90,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20,F1DBE,F1F1D=ABC=20,BF1=DF1,F1BD=ABC=30,F1DB=90,F1DF1=ABC=20,DF1F1是等边三角形,DF1=DF1
27、,过点D作DGBC于G,BD=CD,ABC=20,点D是角平分线上一点,DBC=DCB=20=30,BG=BC=,BD=3CDF1=180-BCD=180-30=150,CDF1=320-150-20=150,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20,点D是角平分线上一点,DEAB,DBC=BDE=ABD=20=30,又BD=3,BE=3cos30=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或222、(1)BAD=15;(2)BAC=45或BAD =60;(3)CE=【解析】(1)如图1中,当点E在BC上
28、时只要证明BADCAE,即可推出BAD=CAE=(90-60)=15;(2)分两种情形求解如图2中,当BD=DC时,易知AD=CD=DE,此时DEC是等腰三角形如图3中,当CD=CE时,DEC是等腰三角形;(3)如图4中,当E在BC上时,E记为E,D记为D,连接EE作CMEE于M,ENAC于N,DE交AE于O首先确定点E的运动轨迹是直线EE(过点E与BC成60角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).【详解】解:(1)如图1中,当点E在BC上时AD=AE,DAE=60,ADE是等边三角形,ADE=AED=60,ADB=AEC=120,AB=AC,BAC=90,B=C=45,
29、在ABD和ACE中,B=C,ADB=AEC,AB=AC,BADCAE,BAD=CAE=(90-60)=15(2)如图2中,当BD=DC时,易知AD=CD=DE,此时DEC是等腰三角形,BAD=BAC=45如图3中,当CD=CE时,DEC是等腰三角形AD=AE,AC垂直平分线段DE,ACD=ACE=45,DCE=90,EDC=CED=45,B=45,EDC=B,DEAB,BAD=ADE=60(3)如图4中,当E在BC上时,E记为E,D记为D,连接EE作CMEE于M,ENAC于N,DE交AE于OAOE=DOE,AED=AEO,AOEDOE,AO:OD=EO:OE,AO:EO=OD:OE,AOD=E
30、OE,AODEOE,EEO=ADO=60,点E的运动轨迹是直线EE(过点E与BC成60角的直线上),EC的最小值即为线段CM的长(垂线段最短),设EN=CN=a,则AN=4-a,在RtANE中,tan75=AN:NE,2+=,a=2-,CE=CN=2-在RtCEM中,CM=CEcos30=,CE的最小值为【点睛】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题23、 (1)见解析;(2).【解析】(1)画树
31、状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,摸出的两个小球号码之和等于4的概率为=【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.24、(1)见解析;(2)2.【解析】(1)根据相似三角形的判定,易证ABFBEC,从而可以证明BAF=CBE成立;(2)根据锐角三角函数和三角形的相似可以求得AF的长【详解】(1)证明:四边形ABCD是平行四边形,ABCD,ADBC,AD=BC,D+C=180,ABF=BEC,AFB+AFE=180,AFE=D,C=AFB,ABFBEC,BAF=CBE;(2)AEDC,AD=5,AB=8,sinD=,AE=4,DE=3EC=5AEDC,ABDC,AED=BAE=90,在RtABE中,根据勾股定理得:BE=BC=AD=5,由(1)得:ABFBEC, =即 =解得:AF=BF=2【点睛】本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答