《2023届广东省江门市新会区重点中学中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省江门市新会区重点中学中考数学模试卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后
2、的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )Ax(x-60)=1600Bx(x+60)=1600C60(x+60)=1600D60(x-60)=16002如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A2B0C1D43如图,直线AB、CD相交于点O,EOCD,下列说法错误的是( )AAODBOCBAOEBOD90CAOCAOEDAODBOD1804下列安全标志图中,是中心对称图形的是( )ABCD5如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距
3、离x(m)满足关系式ya(xk)2+h已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A球不会过网B球会过球网但不会出界C球会过球网并会出界D无法确定6下列因式分解正确的是( )Ax2+9=(x+3)2Ba2+2a+4=(a+2)2Ca3-4a2=a2(a-4)D1-4x2=(1+4x)(1-4x)7我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量把130000000kg用科学记数法可表示为( )A13kgB0.13kgC1.3kgD1.3kg8
4、下列各数中是有理数的是()AB0CD9如图,直线ABCD,A70,C40,则E等于()A30B40C60D7010如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰EBA,那么结论中:A=30;点C与AB的中点重合;点E到AB的距离等于CE的长,正确的个数是()A0B1C2D3二、填空题(共7小题,每小题3分,满分21分)11袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有_个12如图,中,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_13某次数学测试,某班一
5、个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_14一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15方向,则此时货轮与灯塔B的距离是_km.15北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为 16如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为 .17如图所示,数轴上点A所表示的数为a,则a的值是_三、解答
6、题(共7小题,满分69分)18(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_人,扇形统计图中“了解”部分所对应扇形的圆心角为_.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_人.(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.19(5分)经过某
7、十字路口的汽车,它可能继续直行,也可能向左转或向右转如果这三种可能性大小相同,现有两辆汽车经过这个十字路口(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率(2)求至少有一辆汽车向左转的概率20(8分)已知:如图,A、C、F、D在同一直线上,AFDC,ABDE,BCEF,求证:ABCDEF21(10分)如图,在ABCD中,DEAB,BFCD,垂足分别为E,F求证:ADECBF;求证:四边形BFDE为矩形22(10分)制作一种产品,需先将材料加热达到60后,再进行操作,设该材料温度为y()从加热开始计算的时间为x(min)据了解,当该材料加热时,
8、温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图)已知在操作加热前的温度为15,加热5分钟后温度达到60分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?23(12分)如图,已知AB是O的弦,C是 的中点,AB=8,AC= ,求O半径的长24(14分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图
9、中提供的信息,解答下列问题m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x60)米,根据长方形的面积计算法则列出方程考点:一元二次方程的应用2、C【解析】【分析】首先确定原点位置,进而可得C点对应的数【详解】点A、B表示的数互为相反数,AB=6原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又BC=2
10、,点C在点B的左边,点C对应的数是1,故选C【点睛】本题主要考查了数轴,关键是正确确定原点位置3、C【解析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得【详解】A、AOD与BOC是对顶角,所以AOD=BOC,此选项正确;B、由EOCD知DOE=90,所以AOE+BOD=90,此选项正确;C、AOC与BOD是对顶角,所以AOC=BOD,此选项错误;D、AOD与BOD是邻补角,所以AOD+BOD=180,此选项正确;故选C【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义4、B【解析】试题分析:A不是中心对称图形,故此选项不合题意;B是中心对称图形,
11、故此选项符合题意;C不是中心对称图形,故此选项不符合题意;D不是中心对称图形,故此选项不合题意;故选B考点:中心对称图形5、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得详解:根据题意,将点A(0,2)代入 得:36a+2.6=2,解得: y与x的关系式为 当x=9时, 球能过球网,当x=18时, 球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.6、C【解析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(12x)故选C,考点:因式分解【详
12、解】请在此输入详解!7、D【解析】试题分析:科学计数法是指:a,且,n为原数的整数位数减一.8、B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案【详解】A、是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、是无理数,故本选项错误,故选B【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键9、A【解析】ABCD,A=70,1=A=70,1=C+E,C=40,E=1C=7040=30故选A10、D【解析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可【详
13、解】把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰EBA,A=EBA,CBE=EBA,A=CBE=EBA,C=90,A+CBE+EBA=90,A=CBE=EBA=30,故选项正确;A=EBA,EDB=90,AD=BD,故选项正确;C=EDB=90,CBE=EBD=30,EC=ED(角平分线上的点到角的两边距离相等),点E到AB的距离等于CE的长,故选项正确,故正确的有3个故选D【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析
14、】试题解析:袋中装有6个黑球和n个白球,袋中一共有球(6+n)个,从中任摸一个球,恰好是黑球的概率为,解得:n=1故答案为112、【解析】首先证明CAA是等边三角形,再证明ADC是直角三角形,在RtADC中利用含30度的直角三角形三边的关系求出CD、AD即可解决问题【详解】在RtACB中,ACB=90,B=30,A=60,ABC绕点C逆时针旋转至ABC,使得点A恰好落在AB上,CA=CA=2,CAB=A=60,CAA为等边三角形,ACA=60,BCA=ACB -ACA=90-60=30,ADC=180-CAB-BCA=90,在RtADC中,ACD=30,AD=CA=1,CD=AD=,故答案为:
15、【点睛】本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键13、85【解析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.14、1【解析】作CEAB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据
16、三角形的外角的性质求出B的度数,根据正弦的定义计算即可【详解】作CEAB于E,1km/h30分钟=9km,AC=9km,CAB=45,CE=ACsin45=9km,灯塔B在它的南偏东15方向,NCB=75,CAB=45,B=30,BC=1km,故答案为:1【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键15、2.581【解析】科学记数法就是将一个数字表示成(a10的n次幂的形式),其中1|a|10,n表示整数即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂258 000=2.58116、1或【解析】当CEB为直角三角形时,
17、有两种情况:当点B落在矩形内部时,如答图1所示连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得ABE=B=90,而当CEB为直角三角形时,只能得到EBC=90,所以点A、B、C共线,即B沿AE折叠,使点B落在对角线AC上的点B处,则EB=EB,AB=AB=1,可计算出CB=2,设BE=x,则EB=x,CE=4-x,然后在RtCEB中运用勾股定理可计算出x当点B落在AD边上时,如答图2所示此时ABEB为正方形【详解】当CEB为直角三角形时,有两种情况:当点B落在矩形内部时,如答图1所示连结AC,在RtABC中,AB=1,BC=4,AC=5,B沿AE折叠,使点B落在点B处,ABE=B=90
18、,当CEB为直角三角形时,只能得到EBC=90,点A、B、C共线,即B沿AE折叠,使点B落在对角线AC上的点B处,EB=EB,AB=AB=1,CB=5-1=2,设BE=x,则EB=x,CE=4-x,在RtCEB中,EB2+CB2=CE2,x2+22=(4-x)2,解得,BE=;当点B落在AD边上时,如答图2所示此时ABEB为正方形,BE=AB=1综上所述,BE的长为或1故答案为:或117、【解析】根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标【详解】直角三角形的两直角边为1,2,斜边长为,那么a的值是:故答案为.【点睛】此题主要
19、考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离三、解答题(共7小题,满分69分)18、(1)60,30;(2)300;(3) 【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)利用样本估计总体的方法,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:3050%=60(人);了解部分的人数为60(15+30
20、+10)=5,扇形统计图中“了解”部分所对应扇形的圆心角为:360=30;故答案为60,30;(2)根据题意得:900=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,故答案为300;(3)画树状图如下:所有等可能的情况有6种,其中抽到女生A的情况有2种,所以P(抽到女生A)=【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比19、 (1);(2)【解析】(1)可以采用列表法或树状图求解可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出
21、至少有一辆汽车向左转的结果数,根据概率公式可得答案【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等P(至少有一辆汽车向左转)=【点睛】此题考查了树状图法求概率解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解20、证明见解析【解析】试题分析:首先根据AF=DC,可推得AFCF=DCCF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SS
22、S即可证明ABCDEF试题解析:AF=DC,AFCF=DCCF,即AC=DF;在ABC和DEF中 ABCDEF(SSS) 21、(1)证明见解析;(2)证明见解析.【解析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到CDE为直角,利用三个角为直角的四边形为矩形即可的值【详解】解:(1)DEAB,BFCD,AED=CFB=90,四边形ABCD为平行四边形,AD=BC,A=C,在ADE和CBF中,ADECBF(AAS);(2)四边形ABCD为平行四边形,CDAB,
23、CDE+DEB=180,DEB=90,CDE=90,CDE=DEB=BFD=90,则四边形BFDE为矩形【点睛】本题考查1矩形的判定;2全等三角形的判定与性质;3平行四边形的性质22、(1);(2)20分钟.【解析】(1)材料加热时,设y=ax+15(a0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0x5)停止加热时,设y=(k0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟答:从开始加热到停止操作,共经历了20分钟23、5
24、【解析】试题分析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设O的半径为r,在ACD中,利用勾股定理求得CD=2,在OAD中,由OA2=OD2+AD2,代入相关数量求解即可得.试题解析:连接OC交AB于D,连接OA,由垂径定理得OD垂直平分AB,设O的半径为r,在ACD中,CD2+AD2=AC2,CD=2,在OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,O的半径为5. 24、 (1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数骑自行车的百分比得出人数.试题解析:(1)、114%20%40%=26%; 2040%=50;骑自行车人数:5020137=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:150020%=300(名)答:该校骑自行车上学的学生有300名考点:统计图