《2023届广东省深圳市龙岗实验中学中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省深圳市龙岗实验中学中考联考数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m2下列图形是轴对称图形的有()A2个B3个C4个D5个3如图,O的半径为1,ABC是O的内接三角形,连接OB、OC,若BAC与BOC互补,则弦BC的长为()AB2C3D1.54(3分)学校要组织足球比赛赛制为单
2、循环形式(每两队之间赛一场)计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛根据题意,下面所列方程正确的是( )A B C D5如图,在RtABC中,ABC=90,AB=6,BC=8,点E是ABC的内心,过点E作EFAB交AC于点F,则EF的长为( )ABCD6如图,已知ABCD,DEAC,垂足为E,A120,则D的度数为()A30B60C50D407的相反数是( )AB2CD8在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”已知O是以原点为圆心,半径为 圆,则O的“整点直线”共有( )条A7B
3、8C9D109如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()ABCD10据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A3.91010B3.9109C0.391011D39109二、填空题(共7小题,每小题3分,满分21分)11一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_12已知ABC中,AB=6,AC=BC=5,将ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E
4、F分别在边AB、AC上)当以BED为顶点的三角形与DEF相似时,BE的长为_13抛物线y=x2+2x+m1与x轴有交点,则m的取值范围是_14在实数范围内分解因式: =_15一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是_16如图,在ABC中,DEBC,则_17方程1的解是_.三、解答题(共7小题,满分69分)18(10分)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表
5、全部销售完后获得利润为y元试写出y与x之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.19(5分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.20(8分)在RtABC中,BAC=,D是BC的中点,E是AD的中点过点A作AFBC交BE的延长线于点F(1)求证:AEFDEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积21(10分)如图是一副扑克牌
6、中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率22(10分)如图,在平行四边形ABCD中,连接AC,做ABC的外接圆O,延长EC交O于点D,连接BD、AD,BC与AD交于点F分,ABC=ADB。(1)求证:AE是O的切线;(2)若AE=12,CD=10,求O的半径。23(12分)先化简,再求值:(m+2),其中m=24(14分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字请你用画树状
7、图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于1参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故答案选B2、C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形据此对图中的图形进行判断解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任
8、何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意故轴对称图形有4个故选C考点:轴对称图形3、A【解析】分析:作OHBC于H,首先证明BOC=120,在RtBOH中,BH=OBsin60=1,即可推出BC=2BH=,详解:作OHBC于HBOC=2BAC,BOC+BAC=180,BOC=120,OHBC,OB=OC,BH=HC,BOH=HOC=60,在RtBOH中,BH=OBsin60=1,BC=2BH=.故选A
9、点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线4、B【解析】试题分析:设有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:,故选B考点:由实际问题抽象出一元二次方程5、A【解析】过E作EGAB,交AC于G,易得CG=EG,EF=AF,依据ABCGEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论【详解】过E作EGBC,交AC于G,则BCE=CEGCE平分BCA,BCE=ACE,ACE=CEG,CG=EG,同理可得:EF=AFBCGE,ABEF,BCA=EGF,BAC=EFG,ABCGEFABC=90,AB=6,BC
10、=8,AC=10,EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5kAC=10,3k+5k+4k=10,k=,EF=3k=故选A【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形6、A【解析】分析:根据平行线的性质求出C,求出DEC的度数,根据三角形内角和定理求出D的度数即可详解:ABCD,A+C=180 A=120,C=60 DEAC,DEC=90,D=180CDEC=30 故选A点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出C的
11、度数是解答此题的关键7、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .8、D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.9、D【解析】连接OC,过点A作ADCD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知AOC是等边三角形,可得AOC=BOC=60,故ACO与BOC为边长相等的两个等边三角形,再根据锐角三
12、角函数的定义得出AD=OAsin60=2=,因此可求得S阴影=S扇形AOB2SAOC=22=2故选D点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键10、A【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】39000000000=3.91故选A【点睛】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数二、填空题(共7小题,每小题3分,满分21分)11、3
13、7【解析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,这个两位数为:37【点睛】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.12、3或【解析】以BED为顶点的三角形与DEF相似分两种情形画图分别求解即可.【详解】如图作CMAB当FED=EDB时,B=EAF=EDFEDFDBEEFCB,设EF交AD于点OAO=OD,OEBDAE= EB=3当FED=DEB时则FED=FEA=DEB=60此时FEDDEB,设AE=ED=x,作DNAB于N,则EN=,DN=,DNCM,xBE=6-x=
14、故答案为3或【点睛】本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.13、m1【解析】由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式0,即可得出关于m的一元一次不等式,解之即可得出结论【详解】关于x的一元二次方程x1+1x+m1=0有解,=114(m1)=84m0,解得:m1.故答案为:m1.【点睛】本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.14、2(x+)(x-)【解析】先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继
15、续分解【详解】2x2-6=2(x2-3)=2(x+)(x-)故答案为2(x+)(x-)【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止15、15【解析】分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值详解: 当y=127时, 解得:x=43;当y=43时,解得:x=15;当y=15时, 解得 不符合条件则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.16、【解析】先利用平行条件证明三角形的相似,再利用相似三
16、角形面积比等于相似比的平方,即可解题.【详解】解:DEBC,,由平行条件易证ADEABC,SADE:SABC=1:9,=.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.17、x4【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3+2xx1,解得:x4,经检验x4是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.三、解答题(共7小题,满分69分)18、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案进货时,经销商可获利最大
17、,最大利润是13000元【解析】(1)根据利润y=(A售价A进价)x+(B售价B进价)(100x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可【详解】解:(1)y=(900700)x+(160100)(100x)=140x+6000.由700x+100(100x)40000得x50.y与x之间的函数关系式为y=140x+6000(x50)(2)令y12600,即140x+600012600,解得x47.1.又x50,经销商有以下三种进货方案:方案A品牌
18、(块)B品牌(块)485249515050(3)1400,y随x的增大而增大.x=50时y取得最大值.又14050+6000=13000,选择方案进货时,经销商可获利最大,最大利润是13000元【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用19、(1);(2)1或9.【解析】试题分析:(1)把A(2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二
19、次方程,令=0,即可求得m的值.试题解析: (1)根据题意,把A(2,b)的坐标分别代入一次函数和反比例函数表达式,得,解得,所以一次函数的表达式为yx5.(2)将直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m.由得, x2(5m)x80.(5m)2480,解得m1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解20、(1)证明详见解析;(2)证明详见解析;(3)1【解析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论; (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明
20、四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形; (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案【详解】(1)证明:AFBC,AFE=DBE,E是AD的中点,AE=DE,在AFE和DBE中,AFEDBE(AAS);(2)证明:由(1)知,AFEDBE,则AF=DBAD为BC边上的中线DB=DC,AF=CDAFBC,四边形ADCF是平行四边形,BAC=90,D是BC的中点,E是AD的中点,AD=DC=BC,四边形ADCF是菱形;(3)连接DF,AFBD,AF=BD,四边形ABDF是平行四边形,DF=
21、AB=5,四边形ADCF是菱形,S菱形ADCF=ACDF=45=1【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用21、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.22、(1)证明见解析;(2)【解析】(1)作辅助线,先根据垂径定理得:OA
22、BC,再证明OAAE,则AE是O的切线;(2)连接OC,证明ACEDAE,得,计算CE的长,设O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论【详解】(1)证明:连接OA,交BC于G,ABC=ADBABC=ADE,ADB=ADE,OABC,四边形ABCE是平行四边形,AEBC,OAAE,AE是O的切线;(2)连接OC,AB=AC=CE,CAE=E,四边形ABCE是平行四边形,BCAE,ABC=E,ADC=ABC=E,ACEDAE,AE=12,CD=10,AE2=DECE,144=(10+CE)CE,解得:CE=8或-18(舍),AC=CE=8,RtAGC中,AG=2,设O的
23、半径为r,由勾股定理得:r2=62+(r-2)2,r=,则O的半径是【点睛】此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键23、-2(m+3),-1【解析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算【详解】解:(m+2-),=,=-,=-2(m+3)把m=-代入,得,原式=-2(-+3)=-124、(1);(2)【解析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率【详解】第二次第一次6276(6,6)(6,2)(6,7)2(2,6)(2,2)(2,7)7(7,6)(7,2)(7,7)(1)P(两数相同)=(2)P(两数和大于1)=【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率