2023届广东省潮州市湘桥区重点达标名校中考数学考试模拟冲刺卷含解析.doc

上传人:茅**** 文档编号:87784467 上传时间:2023-04-17 格式:DOC 页数:16 大小:1,010.50KB
返回 下载 相关 举报
2023届广东省潮州市湘桥区重点达标名校中考数学考试模拟冲刺卷含解析.doc_第1页
第1页 / 共16页
2023届广东省潮州市湘桥区重点达标名校中考数学考试模拟冲刺卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2023届广东省潮州市湘桥区重点达标名校中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省潮州市湘桥区重点达标名校中考数学考试模拟冲刺卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知反比函数的图象过RtABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若ABO的周长为,AD=2,则ACO的面积为( )AB1C2D42在平面

2、直角坐标系中,函数的图象经过( )A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限3化简的结果是( )ABCD2(x1)4观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为A75B89C103D1395在,这四个数中,比小的数有( )个ABCD6如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )ABCD7已知点A(1,y1)、B(2,y2)、C(3,y3)都在反比例函数y的图象上,则y1、y2、y3的大小关系是( )Ay1y2y3By3y2y1Cy2y1y3Dy3y1y28已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C

3、除外),作PEAB于点E,作PFBC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()ABCD9九章算术是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )ABCD10计算的正确结果是()AB-C1D1二、填空题(共7小题,每小题3分,满分21分)11如图,将ABC放在每个小

4、正方形的边长为1的网格中,点A,点B,点C均落在格点上(1)计算ABC的周长等于_(2)点P、点Q(不与ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC当AQPC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明)_12如图,在矩形纸片ABCD中,AB2cm,点E在BC上,且AECE若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC_cm13在RtABC中,C=90,sinA=,那么cosA=_14用配方法解方程3x26x+1=0,则方程可变形为(x_)2=_15如图,RtABC的直角边BC在x轴上,

5、直线y=x经过直角顶点B,且平分ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_16如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_17如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_三、解答题(共7小题,满分69分)18(10分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究

6、下面是小明的探究过程,请补充完整按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:连接BE,则BE的长约为 cm当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为 cm19(5分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”

7、的问题,对在校学生进行随机抽样调查,从而得到一组数据如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少? 20(8分)如图,在平面直角坐标xOy中,正比例函数ykx的图象与反比例函数y的图象都经过点A(2,2)(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接

8、AB,AC,求点C的坐标及ABC的面积21(10分)已知:关于x的方程x2(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值22(10分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角ECA=30,旗杆底部B的俯角ECB=45,求旗杆AB的髙23(12分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图

9、所示的统计图(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率24(14分)先化简,再求值:,其中a为不等式组的整数解参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为O

10、A中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可【详解】在RtAOB中,AD=2,AD为斜边OB的中线,OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2-x,根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,AB=+,OA=-,过D作DEx轴,交x轴于点E,可得E为AO中点,OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),在RtDEO中,利用勾股定理得:DE=(+)),k=-DEOE=-(+))(-

11、))=1.SAOC=DEOE=,故选A【点睛】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键2、A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b当k0,bO时,图象过一、二、三象限,据此作答即可【详解】一次函数y=3x+1的k=30,b=10,图象过第一、二、三象限,故选A【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.3、A【解析】原式利用除法法则变形,约分即可得到结果【详解】原式=(x1)=故选A【点睛】本题考查了分式的乘除法,熟练掌

12、握运算法则是解答本题的关键4、A【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B5、B【解析】比较这些负数的绝对值,绝对值大的反而小.【详解】在4、1、这四个数中,比2小的数是是4和.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.6、C【解析】连接AE,只要证明ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,AB是直径,AEB=90,即AEBC,EB=EC,AB=AC,C=B,BAC=5

13、0,C= (180-50)=65,故选:C【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题7、B【解析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可【详解】点A(1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,y1=6,y2=3,y3=-2,236,y3y2y1,故选B【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.8、A【解析】由题意可得:APE和PCF都

14、是等腰直角三角形AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长则y=2x,为正比例函数故选A9、D【解析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组错误,故选:D【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系

15、及等式的基本性质10、D【解析】根据有理数加法的运算方法,求出算式的正确结果是多少即可【详解】原式 故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:同号相加,取相同符号,并把绝对值相加绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1一个数同1相加,仍得这个数二、填空题(共7小题,每小题3分,满分21分)11、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P 【解析】(1)利用勾股定理求出AB,从而得到ABC的周长;(2) 取格点D,E,F,G,

16、H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.【详解】解:(1)AC=3,BC=4,C=90,根据勾股定理得AB=5,ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.【点睛】本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.12、4【解析】A

17、B=2cm,AB=AB1,AB1=2cm,四边形ABCD是矩形,AE=CE,ABE=AB1E=90AE=CEAB1=B1CAC=4cm13、 【解析】RtABC中,C=90,sinA=,sinA=,c=2a,b= ,cosA=,故答案为.14、1 【解析】原方程为3x26x+1=0,二次项系数化为1,得x22x=,即x22x+1=+1,所以(x1)2= .故答案为:1,.15、1【解析】分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值详解:根据一次函数可得:点B的坐标为(1,0), BD平分ABC的面积,BC=3点D的横坐标1.5, 点D的

18、坐标为, DE:AB=1:1, 点A的坐标为(1,1), k=11=1点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型得出点D的坐标是解决这个问题的关键16、1【解析】根据相似三角形的对应边的比相等列出比例式,计算即可【详解】ADEACB,=,即=,解得:BD=1故答案为1【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键17、1【解析】骑车的学生所占的百分比是100%=35%,步行的学生所占的百分比是110%15%35%=40%,若该校共有学生1500人,则据此估计步行的有150040%=1(人),故答案为1三、解答题(共7小题,满

19、分69分)18、(1)详见解析;(2)详见解析;(3)6;6或4.1【解析】(1)由题意得出BC3cm时,CD2.85cm,从点C与点B重合开始,一直到BC4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD,得出ADAB+BD4.9367(cm),再由勾股定理求出AC即可;(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;(3)BC6时,CDAC4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BEBC6即可;分两种情况:当CAB90时,ACCD,即图象y1与y2的交点,由图象可得:BC6;当CBA90时

20、,BCAD,由圆的对称性与CAB90时对称,AC6,由图象可得:BC4.1【详解】(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC3cm时,CD2.85cm,从点C与点B重合开始,一直到BC4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:CDAB,(cm),ADAB+BD4+0.93674.9367(cm),(cm);补充完整如下表:(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:(3)BC6cm时,CDAC4.1cm,即点C与点E重合,CD与AC重合,BC为直径,B

21、EBC6cm,故答案为:6;以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:当CAB90时,ACCD,即图象y1与y2的交点,由图象可得:BC6cm;当CBA90时,BCAD,由圆的对称性与CAB90时对称,AC6cm,由图象可得:BC4.1cm;综上所述:BC的长度约为6cm或4.1cm;故答案为:6或4.1 【点睛】本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键19、(1)50(2)36(3)160【解析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条

22、形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数【详解】(1)该校对名学生进行了抽样调查本次调查中,最喜欢篮球活动的有人,最喜欢篮球活动的人数占被调查人数的(3),人,人答:估计全校学生中最喜欢跳绳活动的人数约为人【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1

23、,直接反映部分占总体的百分比大小20、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将ABC的面积转化为OBC的面积试题解析:()把代入反比例函数表达式,得,解得,反比例函数表达式为,把代入正比例函数,得,解得,正比例函数表达式为()直线由直线向上平移个单位所得,直线的表达式为,由,解得或,在第四象限,连接,21、 (1)详见解析;(2)当x10,x20或当x10,x20时,m=;当x10,x20时或x1

24、0,x20时,m=【解析】试题分析:(1)根据判别式0恒成立即可判断方程一定有两个实数根;(2)先讨论x1,x2的正负,再根据根与系数的关系求解试题解析:(1)关于x的方程x2(2m+1)x+2m=0,=(2m+1)28m=(2m1)20恒成立,故方程一定有两个实数根;(2)当x10,x20时,即x1=x2,=(2m1)2=0,解得m=;当x10,x20时或x10,x20时,即x1+x2=0,x1+x2=2m+1=0,解得:m=;当x10,x20时,即x1=x2,=(2m1)2=0,解得m=;综上所述:当x10,x20或当x10,x20时,m=;当x10,x20时或x10,x20时,m=22、

25、 (8+8)m【解析】利用ECA的正切值可求得AE;利用ECB的正切值可求得BE,由AB=AE+BE可得答案【详解】在RtEBC中,有BE=ECtan45=8m,在RtAEC中,有AE=ECtan30=8m,AB=8+8(m)【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形23、(1)15人;(2)补图见解析.(3).【解析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360即可得A1所在扇形的圆心角的度数;(3)根据题意画

26、出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:640%=15人;(2)A2的人数为15264=3(人)补全图形,如图所示,A1所在圆心角度数为:360=48;(3)画出树状图如下:共6种等可能结果,符合题意的有3种选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键24、,1【解析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可【详解】解:原式,不等式组的解为a5,其整数解是2,3,4,a不能等于0,2,4,a3,当a3时,原式1【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁