《2023届广东省汕头市潮南区中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省汕头市潮南区中考数学五模试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分BAD,分别交BC、BD于点E、P,连接OE,ADC=60,AB=BC=1,则下列结论:CAD=30BD=S平行四边形ABCD=ABACOE=ADSAPO=,正确的个数是()A2B3C4
2、D52一个几何体的三视图如图所示,则该几何体的形状可能是()A BC D3郑州地铁号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()ABCD4甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件设乙每天完成x个零件,依题意下面所列方程正确的是()ABCD5如图,若锐角ABC内接于O,点D在O外(与点C在AB同侧),则C与D的大小关系为()ACDBCDCC=DD无法确定6如图,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,且AB=1
3、0,BC=15,MN=3,则AC的长是()A12B14 C16D187如图,在ABC中,AC=BC,点D在BC的延长线上,AEBD,点ED在AC同侧,若CAE=118,则B的大小为()A31B32C59D628如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则CEF的周长为( ) A12B16C18D249计算aa2的结果是()Aa Ba2 C2a2 Da310如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设
4、矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11计算:(a2)2=_12如图,在边长为1的正方形格点图中,B、D、E为格点,则BAC的正切值为_13如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为,再沿直线前进5米,到达点C后,又向左旋转角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度为_14如图,平行四边形ABCD中,AB=AC=4,ABAC,O是对角线的交点,若O过A、C两点,则图中阴影部分的面积之和为_15若方程 x2+(m21)x+1+m0的两根互为相反数,
5、则 m_16一个凸边形的内角和为720,则这个多边形的边数是_三、解答题(共8题,共72分)17(8分)如图,在边长为1个单位长度的小正方形组成的1212网格中建立平面直角坐标系,格点ABC(顶点是网格线的交点)的坐标分别是A(2,2),B(3,1),C(1,0)(1)将ABC绕点O逆时针旋转90得到DEF,画出DEF;(2)以O为位似中心,将ABC放大为原来的2倍,在网格内画出放大后的A1B1C1,若P(x,y)为ABC中的任意一点,这次变换后的对应点P1的坐标为 .18(8分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知
6、购买4个B种品牌的足球与购买5个A种品牌的足球费用相同(1)求购买一个A种品牌、一个B种品牌的足球各需多少元(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?19(8分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线yx22x
7、+3与x轴的“亲近距离”;(2)在探究问题:求抛物线yx22x+3与直线yx1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由(3)若抛物线yx22x+3与抛物线y+c的“亲近距离”为,求c的值20(8分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.21(8分)在ABC中,AB=ACBC,点D和点A在直线BC的同侧,BD=BC,BAC=,DBC=,且+=110,连接AD,求ADB的度数(不必解答)小聪先从特殊问题开
8、始研究,当=90,=30时,利用轴对称知识,以AB为对称轴构造ABD的轴对称图形ABD,连接CD(如图1),然后利用=90,=30以及等边三角形等相关知识便可解决这个问题请结合小聪研究问题的过程和思路,在这种特殊情况下填空:DBC的形状是 三角形;ADB的度数为 在原问题中,当DBCABC(如图1)时,请计算ADB的度数;在原问题中,过点A作直线AEBD,交直线BD于E,其他条件不变若BC=7,AD=1请直接写出线段BE的长为 22(10分)如图,已知O中,AB为弦,直线PO交O于点M、N,POAB于C,过点B作直径BD,连接AD、BM、AP(1)求证:PMAD;(2)若BAP=2M,求证:P
9、A是O的切线;(3)若AD=6,tanM=,求O的直径23(12分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C求双曲线解析式;点P在x轴上,如果ACP的面积为5,求点P的坐标.24校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】先根据角平分线和平行得:BAE=BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角
10、形得:ABE是等边三角形,由外角的性质和等腰三角形的性质得:ACE=30,最后由平行线的性质可作判断;先根据三角形中位线定理得:OE=AB=,OEAB,根据勾股定理计算OC=和OD的长,可得BD的长;因为BAC=90,根据平行四边形的面积公式可作判断;根据三角形中位线定理可作判断;根据同高三角形面积的比等于对应底边的比可得:SAOE=SEOC=OEOC=,代入可得结论【详解】AE平分BAD,BAE=DAE,四边形ABCD是平行四边形,ADBC,ABC=ADC=60,DAE=BEA,BAE=BEA,AB=BE=1,ABE是等边三角形,AE=BE=1,BC=2,EC=1,AE=EC,EAC=ACE
11、,AEB=EAC+ACE=60,ACE=30,ADBC,CAD=ACE=30,故正确;BE=EC,OA=OC,OE=AB=,OEAB,EOC=BAC=60+30=90,RtEOC中,OC=,四边形ABCD是平行四边形,BCD=BAD=120,ACB=30,ACD=90,RtOCD中,OD=,BD=2OD=,故正确;由知:BAC=90,SABCD=ABAC,故正确;由知:OE是ABC的中位线,又AB=BC,BC=AD,OE=AB=AD,故正确;四边形ABCD是平行四边形,OA=OC=,SAOE=SEOC=OEOC=,OEAB,SAOP= SAOE=,故正确;本题正确的有:,5个,故选D【点睛】本
12、题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系2、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为故选D考点:由三视图判断几何体视频3、C【解析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得【详解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE一共有25种等可能的
13、情况,恰好选择从同一个口进出的有5种情况,恰好选择从同一个口进出的概率为=,故选C【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比4、B【解析】根据题意设出未知数,根据甲所用的时间乙所用的时间,用时间列出分式方程即可.【详解】设乙每天完成x个零件,则甲每天完成(x+8)个. 即得, ,故选B.【点睛】找出甲所用的时间乙所用的时间这个关系式是本题解题的关键.5、A【解析】直接利用圆周角定理结合三角形的外角的性质即可得.【
14、详解】连接BE,如图所示:ACB=AEB,AEBD,CD故选:A【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键6、C【解析】延长线段BN交AC于E.AN平分BAC,BAN=EAN.在ABN与AEN中,BAN=EAN,AN=AN,ANB=ANE=90,ABNAEN(ASA),AE=AB=10,BN=NE.又M是ABC的边BC的中点,CE=2MN=23=6,AC=AE+CE=10+6=16.故选C.7、A【解析】根据等腰三角形的性质得出BCAB,再利用平行线的性质解答即可【详解】在ABC中,ACBC,BCAB,AEBD,CAE118,BCABCAE180,即2B180118,解
15、得:B31,故选A【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出BCAB8、A【解析】解:四边形ABCD为矩形,AD=BC=10,AB=CD=8,矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,AF=AD=10,EF=DE,在RtABF中,BF=6,CF=BC-BF=10-6=4,CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1故选A9、D【解析】aa2= a3.故选D.10、A【解析】根据题意找到等量关系:矩形面积+三角形面积阴影面积30;(矩形面积阴影面积)(三角形面积阴影面积)4,据此列出方程组【详解】依题意得:故选A【点睛】考查了由
16、实际问题抽象出二元一次方程组根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组二、填空题(本大题共6个小题,每小题3分,共18分)11、a1【解析】根据幂的乘方法则进行计算即可.【详解】 故答案为【点睛】考查幂的乘方,掌握运算法则是解题的关键.12、 【解析】根据圆周角定理可得BAC=BDC,然后求出tanBDC的值即可【详解】由图可得,BAC=BDC,O在边长为1的网格格点上,BE=3,DB=4,则tanBDC=tanBAC=故答案为【点睛】本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.13
17、、【解析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度【详解】连续左转后形成的正多边形边数为:,则左转的角度是故答案是:【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360是关键14、1【解析】AOB=COD,S阴影=SAOB四边形ABCD是平行四边形,OA=AC=1=2ABAC,S阴影=SAOB=OAAB=21=1【点睛】本题考查了扇形面积的计算15、1【解析】根据“方程 x2+(m21)x+1+m0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意
18、的 m 的值即可【详解】方程 x2+(m21)x+1+m0 的两根互为相反数,1m20,解得:m1 或1,把 m1代入原方程得:x2+20,该方程无解,m1不合题意,舍去,把 m1代入原方程得: x20,解得:x1x20,(符合题意),m1,故答案为1【点睛】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.16、1【解析】设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可【详解】解:设这个多边形的边数是n根据多边形内角和公式可得解得故答案为:1【点睛】此题考查的是根据多边形的内
19、角和,求边数,掌握多边形内角和公式是解决此题的关键三、解答题(共8题,共72分)17、 (1)见解析;(2)见解析,(2x,2y)【解析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点D、E、F,即可得到DEF;(2)先根据位似中心的位置以及放大的倍数,画出原三角形各顶点的对应顶点,再顺次连接各顶点,得到A1B1C1,根据A1B1C1结合位似的性质即可得P1的坐标.【详解】(1)如图所示,DEF即为所求;(2)如图所示,A1B1C1即为所求,这次变换后的对应点P1的坐标为(2x,2y),故答案为(2x,2y)【点睛】本题主要考查了位似变换与旋转变换,解决问题的关键是先作出图形各顶点的对
20、应顶点,再连接各顶点得到新的图形在画位似图形时需要注意,位似图形的位似中心可能在两个图形之间,也可能在两个图形的同侧.18、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元【解析】试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.试题解析:(1) 设A种品牌足球的单价为x元,B种品
21、牌足球的单价为y元,解得 (2) 设第二次购买A种足球m个,则购买B种足球(50m)个,解得25m27m为整数 m25、26、27(3) 第二次购买足球时,A种足球单价为50454(元),B种足球单价为800.972当购买B种足球越多时,费用越高 此时255425723150(元)19、(1)2;(2)不同意他的看法,理由详见解析;(3)c1【解析】(1)把y=x22x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),则PQ=t22t+3(t1),然后
22、利用二次函数的性质得到抛物线y=x22x+3与直线y=x1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为c,从而得到抛物线y=x22x+3与抛物线的“亲近距离”,所以,然后解方程即可【详解】(1)y=x22x+3=(x1)2+2,抛物线上的点到x轴的最短距离为2,抛物线y=x22x+3与x轴的“亲近距离”为:2;(2)不同意他的看法理由如下:如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t
23、1),PQ=t22t+3(t1)=t23t+4=(t)2+,当t=时,PQ有最小值,最小值为,抛物线y=x22x+3与直线y=x1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,不同意他的看法;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),MN=t22t+3(t2+c)=t22t+3c=(t)2+c,当t=时,MN有最小值,最小值为c,抛物线y=x22x+3与抛物线的“亲近距离”为c,c=1【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定
24、义是解题的关键20、【解析】过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知BAD=CAE=30,从而得出BD=2、CE=3,据此可得【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,房子后坡度AB与前坡度AC相等,BAD=CAE,BAC=120,BAD=CAE=30,在直角ABD中,AB=4米,BD=2米,在直角ACE中,AC=6米,CE=3米,a-b=1米【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念21、(1)DBC是等边三角形,ADB
25、=30(1)ADB=30;(3)7+或7【解析】(1)如图1中,作ABDABD,BDBD,连接CD,AD,由ABDABD,推出DBC是等边三角形;借助的结论,再判断出ADBADC,得ADBADC,由此即可解决问题(1)当60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证明方法类似(1)(3)第种情况:当60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第种情况:当060时,如图4中,作ABDABD,BDBD,连接CD,AD证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结
26、论【详解】(1)如图1中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,BAC=90,ABC=45,DBC=30,ABD=ABCDBC=15,在ABD和ABD中,ABDABD,ABD=ABD=15,ADB=ADB,DBC=ABD+ABC=60,BD=BD,BD=BC,BD=BC,DBC是等边三角形,DBC是等边三角形,DB=DC,BDC=60,在ADB和ADC中,ADBADC,ADB=ADC,ADB=BDC=30,ADB=30(1)DBCABC,60110,如图3中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,ABC=ACB,BAC=,ABC=(180)=90,ABD
27、=ABCDBC=90,同(1)可证ABDABD,ABD=ABD=90,BD=BD,ADB=ADBDBC=ABD+ABC=90+90=180(+),+=110,DBC=60,由(1)可知,ADBADC,ADB=ADC,ADB=BDC=30,ADB=30(3)第情况:当60110时,如图31,由(1)知,ADB=30,作AEBD,在RtADE中,ADB=30,AD=1,DE=,BCD是等边三角形,BD=BC=7,BD=BD=7,BE=BDDE=7;第情况:当060时,如图4中,作ABD=ABD,BD=BD,连接CD,AD同理可得:ABC=(180)=90,ABD=DBCABC=(90),同(1)可
28、证ABDABD,ABD=ABD=(90),BD=BD,ADB=ADB,DBC=ABCABD=90(90)=180(+),DB=DC,BDC=60同(1)可证ADBADC,ADB=ADC,ADB+ADC+BDC=360,ADB=ADB=150,在RtADE中,ADE=30,AD=1,DE=,BE=BD+DE=7+,故答案为:7+或7【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型22、(1)证明见解析;(2)证明见解析;(3)1;【解析】(1)根据平行线的判定求出即可;(2
29、)连接OA,求出OAP=BAP+OAB=BOC+OBC=90,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可【详解】(1)BD是直径,DAB=90,POAB,DAB=MCB=90,PMAD;(2)连接OA,OB=OM,M=OBM,BON=2M,BAP=2M,BON=BAP,POAB,ACO=90,AON+OAC=90,OA=OB,BON=AON,BAP=AON,BAP+OAC=90,OAP=90,OA是半径,PA是O的
30、切线;(3)连接BN,则MBN=90tanM=,=,设BC=x,CM=2x,MN是O直径,NMAB,MBN=BCN=BCM=90,NBC=M=90BNC,MBCBNC,BC2=NCMC,NC=x,MN=2x+x=2.1x,OM=MN=1.21x,OC=2x1.21x=0.71x,O是BD的中点,C是AB的中点,AD=6,OC=0.71x=AD=3,解得:x=4,MO=1.21x=1.214=1,O的半径为1【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度23、(1);(2)(,0)或【解析】(1)把A点坐标
31、代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或24、(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增
32、加4m,围成的矩形花圃面积不能达到172m1【解析】(1)假设能,设AB的长度为x米,则BC的长度为(311x)米,再根据矩形面积公式列方程求解即可得到答案.(1)假设能,设AB的长度为y米,则BC的长度为(361y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(311x)米,根据题意得:x(311x)=116,解得:x1=7,x1=9,311x=18或311x=14,假设成立,即长为18米、宽为7米或长为14米、宽为9米(1)假设能,设AB的长度为y米,则BC的长度为(361y)米,根据题意得:y(361y)=172,整理得:y118y+85=2=(18)14185=162,该方程无解,假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m1