2023届广东省新朗实验校中考数学考前最后一卷含解析.doc

上传人:茅**** 文档编号:87784354 上传时间:2023-04-17 格式:DOC 页数:20 大小:968KB
返回 下载 相关 举报
2023届广东省新朗实验校中考数学考前最后一卷含解析.doc_第1页
第1页 / 共20页
2023届广东省新朗实验校中考数学考前最后一卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2023届广东省新朗实验校中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省新朗实验校中考数学考前最后一卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(共10小题,每小题3分,共30分)1有一种球状细菌的直径用科学记数法表示为2.16103米,则这个直径是()A216000米B0.00216米C0.000216米D0.0000216米2根据天津市北大港湿地自然保护总体规划(20172025),2018年将建立养殖业退出补偿机制,生态补水78000000m1将78000000用科学记数法表示应为()A780105 B78106 C7.8107 D0.781083已知二次函数 图象上部分点的坐标对应值列表如下:x-3-2-1012y2-1-2-127则该函数图象的对称轴是( )Ax=-3Bx=-2Cx=-1Dx=04如图,已知点 P

3、 是双曲线 y上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90得到线段 OQ,则经过点 Q 的双曲线的表达式为( )Ay By Cy Dy5如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D6不等式组 中两个不等式的解集,在数轴上表示正确的是 ABCD7不等式组的解在数轴上表示为( )ABCD8如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD9一次函数的图像不经过的象限是:( )A第一象限B第二象限C第三象限D第四象限10平面上直线a、c与b

4、相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A60B50C40D30二、填空题(本大题共6个小题,每小题3分,共18分)11当关于x的一元二次方程ax2+bx+c0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”如果关于x的一元二次方程x2+(m2)x2m0是“倍根方程”,那么m的值为_12在ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于_(结果用、的线性组合表示)13如图,在ABC中,C90,BC16 cm,AC12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A

5、移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t_时,CPQ与CBA相似14如图,在RtABC中,AC=4,BC=3,将RtABC以点A为中心,逆时针旋转60得到ADE,则线段BE的长度为_15点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .16如图,AB是O的直径,AB=2,点C在O上,CAB=30,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为_ 三、解答题(共8题,共72分)17(8分)如图,直线y=kx+b(k0)与双曲线y=(m0)

6、交于点A(,2),B(n,1)求直线与双曲线的解析式点P在x轴上,如果SABP=3,求点P的坐标18(8分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数19(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞

7、机从A处水平飞行至B处需10秒,A在地面C的北偏东12方向,B在地面C的北偏东57方向已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度(结果精确到0.1米,参考数据:sin330.54,cos330.84,tan330.65)20(8分)某市旅游景区有A,B,C,D,E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A,B,C,D,E这五个景点共接待游客 万人,扇形统计图中E景点所对应的圆心角的度数是 ,并补全条形统计图(2)甲,乙两个旅行团在A,B,D三个景点中随机选择一个,这两个旅行团选中同一景点

8、的概率是 21(8分)如图,在中,ABAC,点D是BC的中点,DEAB于点E,DFAC于点F. (1)EDB_(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形;写出DM与DN的数量关系并证明;用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.22(10分)如图,已知抛物线yx24与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线yx+m经过点A,与y轴交于点D求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC

9、平行于直线AD,求新抛物线对应的函数表达式23(12分)如图1,在RtABC中,ABC=90,BA=BC,直线MN是过点A的直线CDMN于点D,连接BD(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系经过观察思考,小明出一种思路:如图1,过点B作BEBD,交MN于点E,进而得出:DC+AD=BD(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当ABD面积取得最大值时,若CD长为1,请直接写BD的长24如图,BAD是由BEC在平面内绕点B旋转60而得,且ABBC,BECE

10、,连接DE求证:BDEBCE;试判断四边形ABED的形状,并说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】2.16103米0.00216米故选B【点睛】考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、C【解析】科学记数法记数时,主要是准确把握标准形式a10n即可.【详解】解:78000000= 7.8107.故选

11、C.【点睛】科学记数法的形式是a10n,其中1a10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.3、C【解析】由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴【详解】解:x=-2和x=0时,y的值相等,二次函数的对称轴为,故答案为:C【点睛】本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键4、D【解析】过P,Q分别作PMx轴,QNx轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可【详解】过P,Q分别作PMx轴,QNx轴,POQ=90,QON+POM=90,QON+OQN=90,PO

12、M=OQN,由旋转可得OP=OQ,在QON和OPM中,QONOPM(AAS),ON=PM,QN=OM,设P(a,b),则有Q(-b,a),由点P在y=上,得到ab=3,可得-ab=-3,则点Q在y=-上故选D【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键5、C【解析】作MHAC于H,如图,根据正方形的性质得MAH=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证

13、明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形也考查了角平分线的性质和正方形的性质6、B【解析】由得,x3,由得

14、,x1,所以不等式组的解集为:1x3,在数轴上表示为:,故选B7、C【解析】先解每一个不等式,再根据结果判断数轴表示的正确方法【详解】解:由不等式,得3x5-2,解得x1,由不等式,得-2x1-5,解得x2,数轴表示的正确方法为C故选C【点睛】考核知识点:解不等式组.8、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形9、C【解析】试题分析:根据一次函数y=kx+b(k0,k、b为常数)的图

15、像与性质可知:当k0,b0时,图像过一二三象限;当k0,b0时,图像过一三四象限;当k0,b0时,图像过一二四象限;当k0,b0,图像过二三四象限.这个一次函数的k=0与b=10,因此不经过第三象限.答案为C考点:一次函数的图像10、C【解析】先根据平角的定义求出1的度数,再由平行线的性质即可得出结论【详解】解:118010080,ac,180806040故选:C【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补二、填空题(本大题共6个小题,每小题3分,共18分)11、-1或-4【解析】分析: 设“倍根方程”的一个根为,则另一根为,由一元二次方程根与系数的关系可得,由此

16、可列出关于m的方程,解方程即可求得m的值.详解:由题意设“倍根方程”的一个根为,另一根为,则由一元二次方程根与系数的关系可得:,化简整理得:,解得 .故答案为:-1或-4.点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程的两根分别为,则.12、【解析】根据三角形法则求出即可解决问题;【详解】如图,=, =,=+=-,BD=BC,=故答案为【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型13、4.8或【解析】根据题意可分两种情况,当CP和CB是对应边时,CPQCBA与CP和CA是对应边时,CPQCAB,根据相似三角形的性质分别求出时间t即可.【详解】

17、CP和CB是对应边时,CPQCBA,所以,即,解得t4.8;CP和CA是对应边时,CPQCAB,所以,即,解得t.综上所述,当t4.8或时,CPQ与CBA相似【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.14、【解析】连接CE,作EFBC于F,根据旋转变换的性质得到CAE=60,AC=AE,根据等边三角形的性质得到CE=AC=4,ACE=60,根据直角三角形的性质、勾股定理计算即可【详解】解:连接CE,作EFBC于F,由旋转变换的性质可知,CAE=60,AC=AE,ACE是等边三角形,CE=AC=4,ACE=60,ECF=30,EF=CE=2,由勾股定理得,CF= = ,BF=

18、BC-CF= ,由勾股定理得,BE= ,故答案为:【点睛】本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键15、【解析】画树状图为:共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a,b)在平面直角坐标系中第二象限内的概率=.故答案为.16、【解析】作出D关于AB的对称点D,则PC+PD的最小值就是CD的长度,在COD中根据边角关系即可求解.【详解】解:如图:作出D关于AB的对称点D,连接OC,OD,CD.又点C在O上,CAB=30,D为弧BC的中点,

19、即,BAD=CAB=15.CAD=45.COD=90.则COD是等腰直角三角形.OC=OD=AB=1,故答案为:.【点睛】本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.三、解答题(共8题,共72分)17、(1)y=2x+1;(2)点P的坐标为(,0)或(,0)【解析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SABP=3,即可得出,解之即可得出

20、结论【详解】(1)双曲线y=(m0)经过点A(,2),m=1双曲线的表达式为y=点B(n,1)在双曲线y=上,点B的坐标为(1,1)直线y=kx+b经过点A(,2),B(1,1),解得直线的表达式为y=2x+1;(2)当y=2x+1=0时,x=,点C(,0)设点P的坐标为(x,0),SABP=3,A(,2),B(1,1),3|x|=3,即|x|=2,解得:x1=,x2=点P的坐标为(,0)或(,0)【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函

21、数的解析式;(2)根据三角形的面积公式以及SABP=3,得出18、 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:3050%=60(人);扇形统计图中“基本了解”部分所对应扇形的圆心角为:360=90;故答案为60,90;(2)60153010=5;补全条形统计图得:(3)根据题意得:900=300

22、(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.19、29.8米【解析】作,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度【详解】解:如图,作,由题意得:米,米,则米,答:这架无人飞机的飞行高度为米【点睛】此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键20、(1)50,43.2,补图见解析;(2)【解析】(1)由A景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;再根据扇

23、形圆心角的度数=部分占总体的百分比360进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率【详解】解:(1)该市景点共接待游客数为:1530%=50(万人),E景点所对应的圆心角的度数是: B景点人数为:5024%=12(万人),补全条形统计图如下:故答案是:50,43.2o.(2)画树状图可得:共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,同时选择去同一个景点的概率=.21、(1);(2)(2)见解析;DMDN,理由见解析

24、;数量关系:【解析】(1)先利用等腰三角形的性质和三角形内角和得到B=C=90,然后利用互余可得到EDB=;(2)如图,利用EDF=1802画图;先利用等腰三角形的性质得到DA平分BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到EDF=1802,所以MDE=NDF,然后证明MDENDF得到DM=DN;先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsin,从而有BM+CN=BCsin【详解】(1)AB=AC,B=C(180A)=90DEAB,DEB=90,EDB=90B=90(90)=故答案为:;(

25、2)如图:DM=DN理由如下:AB=AC,BD=DC,DA平分BACDEAB于点E,DFAC于点F,DE=DF,MED=NFD=90A=2,EDF=1802MDN=1802,MDE=NDF在MDE和NDF中,MDENDF,DM=DN;数量关系:BM+CN=BCsin证明思路为:先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,所以BM+CN=BE+EM+CFFN=2BE,接着在RtBDE可得BE=BDsin,从而有BM+CN=BCsin【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质2

26、2、(1)1 ;(1) yx14x+1或yx1+6x+1【解析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:yx1+bx+1,根据二次函数的性质求出点C的坐标,根据题意求出直线CC的解析式,代入计算即可【详解】解:(1)由x140得,x11,x11,点A位于点B的左侧,A(1,0),直线yx+m经过点A,1+m0,解得,m1,点D的坐标为(0,1),AD1;(1)设新抛物线对应的函数表达式为:yx1+bx+1,yx1+bx+1(x+)1+1,则点C的坐标为(,1),CC平行于直线AD,且经过C(0,4),直线CC的解析式为:yx4,14,解得,b14,

27、b16,新抛物线对应的函数表达式为:yx14x+1或yx1+6x+1【点睛】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键23、(1);(2)ADDC=BD;(3)BD=AD=+1【解析】(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BEBD,交MN于点EAD交BC于O,证明,得到, 根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,ABD的面积最大在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详

28、解】解:(1)如图1中,由题意:,AE=CD,BE=BD,CD+AD=AD+AE=DE,是等腰直角三角形,DE=BD,DC+AD=BD,故答案为(2)证明:如图,过点B作BEBD,交MN于点EAD交BC于O,又,为等腰直角三角形,(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,ABD的面积最大此时DGAB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.24、证明见解析.【解析】(1)根据旋转的性质可得DB=CB,ABD=EB

29、C,ABE=60,然后根据垂直可得出DBE=CBE=30,继而可根据SAS证明BDEBCE;(2)根据(1)以及旋转的性质可得,BDEBCEBDA,继而得出四条棱相等,证得四边形ABED为菱形【详解】(1)证明:BAD是由BEC在平面内绕点B旋转60而得,DB=CB,ABD=EBC,ABE=60,ABEC,ABC=90,DBE=CBE=30,在BDE和BCE中,BDEBCE;(2)四边形ABED为菱形;由(1)得BDEBCE,BAD是由BEC旋转而得,BADBEC,BA=BE,AD=EC=ED,又BE=CE,BA=BE=ED= AD四边形ABED为菱形考点:旋转的性质;全等三角形的判定与性质;菱形的判定

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁