《2023届江苏省南通市海安县中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省南通市海安县中考五模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,I是ABC的内心,AI向延长线和ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )A线段DB绕点D顺时针旋转一定能与线段DC重合B线段DB绕点D顺时针旋转一定能与线段DI熏合CCAD绕点A顺时针旋转一定能与DAB重合D
2、线段ID绕点I顺时针旋转一定能与线段IB重合2有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()Aa4Bbd0C|a|b|Db+c03已知二次函数y=ax2+bx+c(a0)的图象如图所示,有下列5个结论:abc0;b0;2c3bn(an+b)(n1),其中正确的结论有( )A2个B3个C4个D5个4如果与互补,与互余,则与的关系是( )ABCD以上都不对5二次函数的最大值为( )A3B4C5D66已知点,与点关于轴对称的点的坐标是( )ABCD7若xy,则下列式子错误的是( )Ax3y3B3x3yCx+3y+3D8如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车
3、”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A(1,1)B(2,1)C(2,2)D(3,1)9是两个连续整数,若,则分别是( ).A2,3B3,2C3,4D6,810如图所示的几何体的俯视图是( )ABCD11已知抛物线y=ax2(2a+1)x+a1与x轴交于A(x1,0),B(x2,0)两点,若x11,x22,则a的取值范围是()Aa3B0a3Ca3D3a012的化简结果为A3BCD9二、填空题:(本大题共6个小题,每小题4分,共24分)13已知函数y=-1,给出一下结论:y的值随x的增大而减小此函数的图形与x轴的交点为(1,0)当x0时,y的值随x的增
4、大而越来越接近-1当x时,y的取值范围是y1以上结论正确的是_(填序号)14如图,点M是反比例函数(x0)图像上任意一点,MNy轴于N,点P是x轴上的动点,则MNP的面积为A1B2C4D不能确定15因式分解:3x23x=_16如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则1+2=_度17已知关于x的一元二次方程kx2+3x4k+6=0有两个相等的实数根,则该实数根是_18分解因式:=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽
5、、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率20(6分)计算:21(6分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少
6、元?22(8分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,(1)求出的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PCPD的最小值(不必说明理由)23(8分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米每台型挖掘机一小时的施工费用为300元
7、,每台型挖掘机一小时的施工费用为180元分别求每台型, 型挖掘机一小时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?24(10分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积25(10分)解不等式组:并写出它的所有整数解26(12分)如图1,在平面直角坐标系xOy中,抛物线yax2+bx与x轴交于点A(1,0)和点B(3,0)绕点A旋转的直线l
8、:ykx+b1交抛物线于另一点D,交y轴于点C(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出ACE面积的最大值;(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由27(12分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米
9、到达A处,测得树顶端E的仰角为30,他又继续走下台阶到达C处,测得树的顶端的仰角是60,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45,已如A点离地面的高度AB4米,BCA30,且B、C、D 三点在同一直线上(1)求树DE的高度;(2)求食堂MN的高度参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】解:I是ABC的内心,AI平分BAC,BI平分ABC,BAD=CAD,ABI=CBI,故C正确,不符合题意;=,BD=CD,故A正确,不符合题意;DAC=DBC,BAD=DBCIBD=IBC+DBC,BID=ABI+
10、BAD,DBI=DIB,BD=DI,故B正确,不符合题意故选D点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等2、C【解析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案【详解】解:由数轴上点的位置,得a4b0c1dA、a4,故A不符合题意;B、bd0,故B不符合题意;C、|a|4,|b|2,|a|b|,故C符合题意;D、b+c0,故D不符合题意;故选:C【点睛】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键3、B【解析】观察图象可知a0,b0,c0,由此即可判定;当x=
11、1时,y=ab+c由此可判定;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,由此可判定;当x=3时函数值小于0,即y=9a+3b+c0,且x= =1,可得a=,代入y=9a+3b+c0即可判定;当x=1时,y的值最大此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定.【详解】由图象可知:a0,b0,c0,abc0,故此选项错误;当x=1时,y=ab+c0,即ba+c,故此选项错误;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,故此选项正确;当x=3时函数值小于0,y=9a+3b+c0,且x=1即a=,代入得9()+3b+c0,得2c3b,故此选项正
12、确;当x=1时,y的值最大此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+can2+bn+c,故a+ban2+bn,即a+bn(an+b),故此选项正确正确故选B【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键4、C【解析】根据1与2互补,2与1互余,先把1、1都用2来表示,再进行运算【详解】1+2=1801=180-2又2+1=901=90-21-1=90,即1=90+1故选C【点睛】此题主要记住互为余角的两个角的和为90,互为补角的两个角的和为180度5、C【解析】试题分析:先利用配方法得到y=(x1
13、)2+1,然后根据二次函数的最值问题求解解:y=(x1)2+1,a=10,当x=1时,y有最大值,最大值为1故选C考点:二次函数的最值6、C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案【详解】解:点,与点关于轴对称的点的坐标是,故选:C【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数7、B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个
14、正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确故选B8、B【解析】直接利用已知点坐标建立平面直角坐标系进而得出答案【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:棋子“炮”的坐标为(2,1),故答案为:B【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键9、A【解析】根据,可得答案【详解】根据题意,可知,可得a=2,b=1故选A【
15、点睛】本题考查了估算无理数的大小,明确是解题关键10、D【解析】试题分析:根据俯视图的作法即可得出结论从上往下看该几何体的俯视图是D故选D考点:简单几何体的三视图.11、B【解析】由已知抛物线求出对称轴,解:抛物线:,对称轴,由判别式得出a的取值范围,由得故选B12、A【解析】试题分析:根据二次根式的计算化简可得:故选A考点:二次根式的化简二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】(1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论错误;(2)由解得:,的图象与x轴的交点为(1,0),故中结论正确;(3)由可知当x0时,y的值随x的增大而越来越接近
16、-1,故中结论正确;(4)因为在中,当时,故中结论错误;综上所述,正确的结论是.故答案为:.14、A【解析】可以设出M的坐标,的面积即可利用M的坐标表示,据此即可求解【详解】设M的坐标是(m,n),则mn=2.则MN=m,的MN边上的高等于n.则的面积 故选A.【点睛】考查反比例函数系数k的几何意义,是常考点,需要学生熟练掌握.15、3x(x1)【解析】原式提取公因式即可得到结果【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键16、270【解析】根据三角形的内角和与平角定义可求解【详解】解析:如图,根据题
17、意可知5=90, 3+4=90, 1+2=180+180-(3+4)=360-90=270,故答案为:270度.【点睛】本题主要考查了三角形的内角和定理和内角与外角之间的关系要会熟练运用内角和定理求角的度数17、1【解析】根据二次项系数非零结合根的判别式=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解【详解】解:关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,解得:k=,原方程为x1+4x+4=0,即(x+1)1=0,解得:x=-1故答案为:-1【点睛】本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,
18、牢记“当=0时,方程有两个相等的实数根”是解题的关键18、x(y+2)(y-2)【解析】原式提取x,再利用平方差公式分解即可【详解】原式=x(y2-4)=x(y+2)(y-2),故答案为x(y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72;(4).【解析】试题分析:(1)用B的频数除以B所占的百分比即可求得结论;(2)分别求得C的频数及其所占的百分比即可补全统计图;(3)算出A的所占的百
19、分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;(4)列出树形图即可求得结论试题解析:(1)6010%=600(人)答:本次参加抽样调查的居民有600人(2)如图;(3),360(110%30%40%)=72(4)如图;(列表方法略,参照给分)P(C粽)=答:他第二个吃到的恰好是C粽的概率是考点:1条形统计图;2用样本估计总体;3扇形统计图;4列表法与树状图法20、5【解析】本题涉及零指数幂、负整数指数幂、绝对值、乘方四个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】原式=4-80.125+1+1=4-1+2=5【点睛】本题考查实数的
20、综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方、绝对值等考点的运算21、120【解析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解【详解】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意答:第一批水果每件进价为120元【点睛】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.22、(2)2;(2)y=x+2;(3)【解析】(2)确定A、B、C的坐标即可解决问题;
21、(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD的长【详解】解:(2)反比例函数y=的图象上的点横坐标与纵坐标的积相同,A(2,2),B(-2,-2),C(3,2)k=2(2)设直线AB的解析式为y=mx+n,则有,解得,直线AB的解析式为y=x+2(3)C、D关于直线AB对称,D(0,4)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD=【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法
22、确定函数解析式,学会利用轴对称解决最短问题23、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案方案一: 型挖据机7台,型挖掘机5台;方案二: 型挖掘机8台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米(
23、2)设型挖掘机有台,总费用为元,则型挖据机有台根据题意,得 ,因为,解得,又因为,解得,所以所以,共有三种调配方案方案一:当时, ,即型挖据机7台,型挖掘机5台;方案二:当时, ,即型挖掘机8台,型挖掘机4台;方案三:当时, ,即型挖掘机9台,型挖掘机3台,由一次函数的性质可知,随的减小而减小,当时,此时型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题24、(1)y=-,y=-2x-4(2)1【解析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比
24、例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解【详解】(1)将A(3,m+1)代入反比例函数y=得,=m+1,解得m=6,m+1=6+1=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x4;(2)设AB与x轴相交于点C,令2x
25、4=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=22+26,=2+6,=1考点:反比例函数与一次函数的交点问题25、原不等式组的解集为,它的所有整数解为0,1【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可【详解】解:,解不等式,得,解不等式,得x2,原不等式组的解集为,它的所有整数解为0,1【点睛】本题主要考查了一元一次不等式组解集的求法解一元一次不等式组的简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)26、(1)yx2+x;(2)yx+1;(3
26、)当x2时,最大值为;(4)存在,点D的横坐标为3或或【解析】(1)设二次函数的表达式为:ya(x+3)(x1)ax2+2ax3a,即可求解;(2)OCDF,则 即可求解;(3)由SACE=SAMESCME即可求解;(4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可【详解】(1)设二次函数的表达式为:ya(x+3)(x1)ax2+2ax3a,即: 解得: 故函数的表达式为: ;(2)过点D作DFx轴交于点F,过点E作y轴的平行线交直线AD于点M,OCDF,OF5OA5,故点D的坐标为(5,6),将点A、D的坐标代入一次函数表达式:ymx+n得:,解得: 即直线AD的表达式为:yx
27、+1,(3)设点E坐标为 则点M坐标为 则 故SACE有最大值,当x2时,最大值为;(4)存在,理由:当AP为平行四边形的一条边时,如下图,设点D的坐标为 将点A向左平移2个单位、向上平移4个单位到达点P的位置,同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,则点Q的坐标为 将点Q的坐标代入式并解得: 当AP为平行四边形的对角线时,如下图,设点Q坐标为点D的坐标为(m,n),AP中点的坐标为(0,2),该点也是DQ的中点,则: 即: 将点D坐标代入式并解得: 故点D的横坐标为:或或【点睛】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方
28、法求解点的坐标,本题难度大27、(1)12米;(2)(2+8)米【解析】(1)设DEx,先证明ACE是直角三角形,CAE60,AEC30,得到AE16,根据EF=8求出x的值得到答案;(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用NDP45得到NP,即可求出MN.【详解】(1)如图,设DEx,ABDF4,ACB30,AC8,ECD60,ACE是直角三角形,AFBD,CAF30,CAE60,AEC30,AE16,RtAEF中,EF8,即x48,解得x12,树DE的高度为12米;(2)延长NM交DB延长线于点P,则AMBP6,由(1)知CDCEAC4,BC4,PDBP+BC+CD6+4+46+8,NDP45,且NPD90,NPPD6+8,NMNPMP6+842+8,食堂MN的高度为(2+8)米【点睛】此题是解直角三角形的实际应用,考查直角三角形的性质,30角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.