《2023届广东省广州市石井新市学片重点名校中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省广州市石井新市学片重点名校中考数学四模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球两次都摸到红球的概率是( )
2、ABCD2如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有( )和黑子A37B42C73D1213函数y自变量x的取值范围是( )Ax1Bx1且x3Cx3D1x34如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解,则t的取值范围是( ) A-5t4B3t4C-5t-55如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰OBC,将点C向左平移5个单位,使其对应点C
3、恰好落在直线AB上,则点C的坐标为()A(3,3)B(4,3)C(1,3)D(3,4)6关于x的一元二次方程(a1)x2+x+a210的一个根为0,则a值为()A1B1C1D07如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A2.6m2B5.6m2C8.25m2D10.4m28某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则
4、恰好抽到1班和2班的概率是( )ABCD9如图是某公园的一角,AOB=90,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CDOB,则图中休闲区(阴影部分)的面积是()A米2B米2C米2D米210三角形的两边长分别为3和6,第三边的长是方程x26x+80的一个根,则这个三角形的周长是()A9B11C13D11或13二、填空题(共7小题,每小题3分,满分21分)11如图,在RtAOB中,AOB=90,OA=2,OB=1,将RtAOB绕点O顺时针旋转90后得到RtFOE,将线段EF绕点E逆时针旋转90后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图
5、中阴影部分的面积是_12已知,如图,ABC中,DEFGBC,ADDFFB123,若EG3,则AC 13当 _时,二次函数 有最小值_.14对于实数a,b,我们定义符号maxa,b的意义为:当ab时,maxa,ba;当ab时,maxa,bb;如:max4,24,max3,33,若关于x的函数为ymaxx+3,x+1,则该函数的最小值是_15如图,四边形ABCD中,ADCD,B2D120,C75则 16如图,要使ABCACD,需补充的条件是_(只要写出一种)17一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为_.三、解答
6、题(共7小题,满分69分)18(10分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点 (1)如图1,若ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、Q为顶点的四边形是平行四边形,求点的坐标;(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若=11 求的值19(5分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好此时,路灯的灯柱AB的高应该设计为多少米(结
7、果保留根号)20(8分)已知:关于x的方程x2(2m+1)x+2m=0(1)求证:方程一定有两个实数根;(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值21(10分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.22(10分)如图,某数学活动小组为测量学
8、校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,ABBC,AB/DE.求旗杆AB的高度.(参考数据:sin37,cos37,tan37.计算结果保留根号)23(12分)某通讯公司推出,两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示有月租的收费方式是_(填“”或“”),月租费是_元;分别求出,两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出
9、经济实惠的选择建议24(14分)如图,在ABC中,AB=AC,AE是角平分线,BM平分ABC交AE于点M,经过B、M两点的O交BC于点G,交AB于点F,FB恰为O的直径(1)判断AE与O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求O的半径参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红(红,红)(红,红)(绿,红)(绿,绿)红(红,红)(红,红)(绿,红)(绿,红)红(红,红)(红,红)(绿,红)(绿,红)绿(红,绿)(红,绿)(红,
10、绿)(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)所有等可能的情况数为20种,其中两次都为红球的情况有6种,故选A.2、C【解析】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+26=13个,第5、6图案中黑子有1+26+46=37个,第7、8图案中黑子有1+26+46+66=73个故选C点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况3、B【解析】由题意得,x-10且x-30,x1且x3.故选B.4、B【解析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),
11、再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1x3的范围内有公共点可确定t的范围【详解】 抛物线y=-x2+mx的对称轴为直线x=2, , 解之:m=4, y=-x2+4x, 当x=2时,y=-4+8=4, 顶点坐标为(2,4), 关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解, 当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4, 30且x是整数) (2)6000件【解析】(1)本题的等量关系是:纯利润=产品的出厂单价产品的数量-产品的成本价产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列
12、出总利润与产品数量之间的函数关系式;(2)根据(1)中得出的式子,将y的值代入其中,求出x即可【详解】(1)依题意得:y=80x-60x-0.5x2-1,化简得:y=19x-1,所求的函数关系式为y=19x-1(x0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,这个月该厂生产产品6000件【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解22、3+3.5【解析】延长ED交BC延长线于点F,则CFD=90,RtCDF中求得CF=CDcosDCF=2、DF=CD=2,作EGAB,可得GE=BF=4、GB=EF
13、=3.5,再求出AG=GEtanAEG=4tan37可得答案【详解】如图,延长ED交BC延长线于点F,则CFD=90,tanDCF=i=,DCF=30,CD=4,DF=CD=2,CF=CDcosDCF=4=2,BF=BC+CF=2+2=4,过点E作EGAB于点G,则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又AED=37,AG=GEtanAEG=4tan37,则AB=AG+BG=4tan37+3.5=3+3.5,故旗杆AB的高度为(3+3.5)米考点:1、解直角三角形的应用仰角俯角问题;2、解直角三角形的应用坡度坡角问题23、 (1)30;(2)y10.1x30,y20.2x
14、;(3)当通话时间少于300分钟时,选择通话方式实惠;当通话时间超过300分钟时,选择通话方式实惠;当通话时间为300分钟时,选择通话方式,花费一样【解析】试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可解:(1);30;(2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:500k1+30=80,k1=0.1,500k2=100,k2=0.2故所
15、求的解析式为y1=0.1x+30; y2=0.2x;(3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;当x=300时,y=1故由图可知当通话时间在300分钟内,选择通话方式实惠;当通话时间超过300分钟时,选择通话方式实惠;当通话时间在300分钟时,选择通话方式、一样实惠24、(1)AE与O相切理由见解析.(2)2.1【解析】(1)连接OM,则OM=OB,利用平行的判定和性质得到OMBC,AMO=AEB,再利用等腰三角形的性质和切线的判定即可得证;(2)设O的半径为r,则AO=12r,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证AOMABE,根据相似三角形的性质即可求解.【详解】解:(1)AE与O相切理由如下:连接OM,则OM=OB,OMB=OBM,BM平分ABC,OBM=EBM,OMB=EBM,OMBC,AMO=AEB,在ABC中,AB=AC,AE是角平分线,AEBC,AEB=90,AMO=90,OMAE,AE与O相切;(2)在ABC中,AB=AC,AE是角平分线,BE=BC,ABC=C,BC=6,cosC=,BE=3,cosABC=,在ABE中,AEB=90,AB=12,设O的半径为r,则AO=12r,OMBC,AOMABE,=,解得:r=2.1,O的半径为2.1