2023届山西省(大同)重点名校中考试题猜想数学试卷含解析.doc

上传人:茅**** 文档编号:87783972 上传时间:2023-04-17 格式:DOC 页数:19 大小:849.50KB
返回 下载 相关 举报
2023届山西省(大同)重点名校中考试题猜想数学试卷含解析.doc_第1页
第1页 / 共19页
2023届山西省(大同)重点名校中考试题猜想数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届山西省(大同)重点名校中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山西省(大同)重点名校中考试题猜想数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD2已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sinAOB=反比例函数y=在第一象限图象经过点A,与BC交于点

3、FSAOF=,则k=()A15B13C12D53下列计算正确的是()A=B =2Ca6a2=a3D(a2)3=a64在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:成绩(米)人数则这名运动员成绩的中位数、众数分别是( )ABC,D5如图,直线mn,1=70,2=30,则A等于( ) A30B35C40D506下列运算正确的是()A(a1)a1B(2a3)24a6C(ab)2a2b2Da3+a22a57如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15到AC的位置,此时露在水面上的鱼线BC长度是()A3mB mC mD4m8已知二次函

4、数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )A1或5B或3C或1D或59一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是()A4B5C10D1110的相反数是 ( )ABC3D-311二次函数yax2+c的图象如图所示,正比例函数yax与反比例函数y在同一坐标系中的图象可能是()ABCD12估计2的运算结果在哪两个整数之间()A0和1B1和2C2和3D3和4二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上若抛物线y=-

5、x2-5x+c经过点B、C,则菱形ABCD的面积为_ 14若反比例函数y的图象经过点A(m,3),则m的值是_15一个正多边形的一个外角为30,则它的内角和为_16如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 17如图,ABC中,AB6,AC4,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连接EF,则线段EF的长为_18春节期间,中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:锄禾日当午;春眠不觉晓;白日依山尽;床前明月光.甲、乙两名同学从中各随机选取了一句写在纸上,

6、则他们选取的诗句恰好相同的概率为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64,吊臂底部A距地面1.5m(计算结果精确到0.1m,参考数据sin640.90,cos640.44,tan642.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为 m(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)20(6分)如图,点O为RtABC斜边AB上的一点,以OA为半径的O与BC切于点D,与

7、AC交于点E,连接AD.求证:AD平分BAC;若BAC=60,OA=4,求阴影部分的面积(结果保留).21(6分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若A=D,CD=2(1)求A的度数(2)求图中阴影部分的面积22(8分)化简求值:,其中23(8分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数

8、进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定24(10分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点(1)判断:一个内角为120的菱形等距四边形(填“是”或“不是”)(2)如图2,在55的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长端点均为非等距点的对角线长为 端点均为非等距点的对角线长为(3)如图1,已知AB

9、E与CDE都是等腰直角三角形,AEB=DEC=90,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求BCD的度数25(10分)如图,ABC是O的内接三角形,AB是O的直径,OFAB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且ACE+AFO=180.求证:EM是O的切线;若A=E,BC=,求阴影部分的面积.(结果保留和根号).26(12分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区

10、域的数字之和为4的倍数,则乙获胜如果指针落在分割线上,则需要重新转动转盘请问这个游戏对甲、乙双方公平吗?说明理由27(12分)如图,点A在MON的边ON上,ABOM于B,AE=OB,DEON于E,AD=AO,DCOM于C求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据图象起始位置猜想点B或F为起点,则可以判断正确,错误结合图象判断3t4图象的对称性可以判断正确结合图象易得正确【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正

11、六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故正确;所有点中,只有点D到A距离为2个单位,故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势2、A【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值【详解】过点

12、A作AMx轴于点M,如图所示设OA=a=OB,则,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a,a)四边形OACB是菱形,SAOF=,OBAM=,即aa=39,解得a=,而a0,a=,即A(,6),点A在反比例函数y=的图象上,k=6=1故选A【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用SAOF=S菱形OBCA3、D【解析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算【详解】A. 不是同类二次根式,不能合并,故A选项错误;B.=

13、22,故B选项错误;C.a6a2=a4a3,故C选项错误;D.(a2)3=a6,故D选项正确故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.4、D【解析】根据中位数、众数的定义即可解决问题【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1故选:D【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.5、C【解析】试题分析:已知mn,根据平行线的性质可得3170.又因3是ABD的一个外角,可得32A.即A32703040.故答案选C.考点:平行线的性质.6、B【解析】根据去括号法则,

14、积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解【详解】解:A、因为(a1)=a+1,故本选项错误;B、(2a3)2=4a6,正确;C、因为(ab)2=a22ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误故选B【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键7、B【解析】因为三角形ABC和三角形ABC均为直角三角形,且BC、BC都是我们所要求角的对边,所以根据正弦来解题,求出CAB,进而得出CAB的度数,然后可以求出鱼线BC长度【详解】解:sinCABCAB45CAC15,CAB60sin

15、60,解得:BC3故选:B【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题8、D【解析】由解析式可知该函数在时取得最小值0,抛物线开口向上,当时,y随x的增大而增大;当时,y随x的增大而减小;根据时,函数的最小值为4可分如下三种情况:若,时,y取得最小值4;若-1h3时,当x=h时,y取得最小值为0,不是4;若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可【详解】解:当xh时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,若,当时,y取得最小值4,可得:4,解得或(舍去);若-1h3时,当x=h时,y取得最小值为0,不是4,此种情

16、况不符合题意,舍去;若-1x3h,当x=3时,y取得最小值4,可得:,解得:h=5或h=1(舍)综上所述,h的值为-3或5,故选:D【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键9、B【解析】试题分析:(4+x+3+30+33)3=7,解得:x=3,根据众数的定义可得这组数据的众数是3故选B考点:3众数;3算术平均数10、B【解析】先求的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1

17、因此的相反数是故选B11、C【解析】根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a0,c0,正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.12、D【解析】先估算出的大致范围,然后再计算出2的大小,从而得到问题的答案【详解】253231,51原式=22=2,322故选D【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据抛物线的解析

18、式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积【详解】抛物线的对称轴为x=-抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BCx轴,点C的横坐标为-1四边形ABCD为菱形,AB=BC=AD=1,点D的坐标为(-2,0),OA=2在RtABC中,AB=1,OA=2,OB=4,S菱形ABCD=ADOB=14=3故答案为3【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、

19、OB=4是解题的关键14、2【解析】反比例函数的图象过点A(m,3),解得.15、1800【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(122)180=1800故答案为1800考点:多边形内角与外角16、10【解析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.四边形ABCD是正方形,B、D关于AC对称,PB=PD,PB+PE=PD+PE=DE.BE=2,AE=3BE,AE=6,AB=8,DE=1

20、0,故PB+PE的最小值是10.故答案为10.17、1【解析】在AGF和ACF中,AGFACF,AG=AC=4,GF=CF,则BG=ABAG=64=2.又BE=CE,EF是BCG的中位线,EF=BG=1.故答案是:1.18、【解析】用列举法或者树状图法解答即可.【详解】解:如图,由图可得,甲乙两人选取的诗句恰好相同的概率为.故答案为:.【点睛】本题考查用树状图法或者列表法求随机事件的概率,熟练掌握两种解答方法是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)11.4;(2)19.5m.【解析】(1)根据直角三角形的性质和三角函数解答即可;(2)

21、过点D作DH地面于H,利用直角三角形的性质和三角函数解答即可【详解】解:(1)在RtABC中,BAC=64,AC=5m,AB=50.44 11.4 (m);故答案为:11.4;(2)过点D作DH地面于H,交水平线于点E,在RtADE中,AD=20m,DAE=64,EH=1.5m,DE=sin64AD200.918(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m【点睛】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.20、(1)见解析;(2)【解析】试题分析:(1)连接

22、OD,则由已知易证ODAC,从而可得CAD=ODA,结合ODA=OAD,即可得到CAD=OAD,从而得到AD平分BAC;(2)连接OE、DE,由已知易证AOE是等边三角形,由此可得ADE=AOE=30,由AD平分BAC可得OAD=30,从而可得ADE=OAD,由此可得DEAO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.BC是O的切线,D为切点,ODBC. 又ACBC,ODAC,ADO=CAD.又OD=OA,ADO=OAD,CAD=OAD,即AD平分BAC. (2)连接OE,ED.BAC=60,OE=OA,OAE为等边三角形,AOE=6

23、0,ADE=30. 又,ADE=OAD,EDAO, SAEDSOED,阴影部分的面积 = S扇形ODE = .21、 (1) A=30;(2) 【解析】(1)连接OC,由过点C的切线交AB的延长线于点D,推出OCCD,推出OCD=90,即D+COD=90,由OA=OC,推出A=ACO,由A=D,推出A=ACO=D再由A+ACD+D=18090=90即可得出.(2)先求COD度数及OC长度,即可求出图中阴影部分的面积【详解】解:(1)连结OCCD为O的切线OCCDOCD=90又OA=OCA=ACO又A=DA=ACO=D而A+ACD+D=18090=90A=30(2)由(1)知:D=A=30COD

24、=60又CD=2OC=2S阴影=【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.22、 【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式 当时,点睛:考查分式的混合运算,掌握运算顺序是解题的关键.23、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义

25、判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)=70,初中代表队选手成绩比较稳定【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.24、(1)是;(2)见解析;(3)150【解析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS证明AE

26、CBED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,ABD是等边三角形,得出DAB=60,由SSS证明AEDAEC,得出CAE=DAE=15,求出DAC=CAE+DAE=30,BAC=BAECAE=30,由等腰三角形的性质和三角形内角和定理求出ACB和ACD的度数,即可得出答案【详解】解:(1)一个内角为120的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得: 在图3中,由勾股定理得: 故答案为 (3)解:连接BD如图1所示:ABE与CDE都是等腰直角三角形,DE=EC,AE=EB,DEC+BEC=AEB+BEC,即AEC=DE

27、B,在AEC和BED中, ,AECBED(SAS),AC=BD,四边形ABCD是以A为等距点的等距四边形,AD=AB=AC,AD=AB=BD,ABD是等边三角形,DAB=60,DAE=DABEAB=6045=15,在AED和AEC中, AEDAEC(SSS),CAE=DAE=15,DAC=CAE+DAE=30,BAC=BAECAE=30,AB=AC,AC=AD,BCD=ACB+ACD=75+75=150【点睛】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难

28、度,证明三角形全等是解决问题的关键25、(1)详见解析;(2);【解析】(1)连接OC,根据垂直的定义得到AOF=90,根据三角形的内角和得到ACE=90+A,根据等腰三角形的性质得到OCE=90,得到OCCE,于是得到结论;(2)根据圆周角定理得到ACB=90,推出ACO=BCE,得到BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论【详解】:(1)连接OC,OFAB,AOF=90,A+AFO+90=180,ACE+AFO=180,ACE=90+A,OA=OC,A=ACO,ACE=90+ACO=ACO+OCE,OCE=90,OCCE,EM是O的切线;(2)AB是O的直径,ACB=90

29、,ACO+BCO=BCE+BCO=90,ACO=BCE,A=E,A=ACO=BCE=E,ABC=BCO+E=2A,A=30,BOC=60,BOC是等边三角形,OB=BC=,阴影部分的面积=,【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键26、见解析【解析】解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为、乙获胜的概率为,这个游戏对甲、乙双方不公平【点睛】考查的是游戏公平性的判断判断游戏公平性就

30、要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比27、(1)证明见解析;(2)AB、AD的长分别为2和1【解析】(1)证RtABORtDEA(HL)得AOB=DAE,ADBC证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知RtABORtDEA,AB=DE=2设AD=x,则OA=x,AE=OEOA=9x在RtDEA中,由得:.【详解】(1)证明:ABOM于B,DEON于E,.在RtABO与RtDEA中,RtABORtDEA(HL)AOB=DAEADBC又ABOM,DCOM,ABDC四边形ABCD是平行四边形,四边形ABCD是矩形; (2)由(1)知RtABORtDEA,AB=DE=2 设AD=x,则OA=x,AE=OEOA=9x在RtDEA中,由得:,解得AD=1即AB、AD的长分别为2和1【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁