2023届山东省高密市中考数学仿真试卷含解析.doc

上传人:茅**** 文档编号:87783747 上传时间:2023-04-17 格式:DOC 页数:21 大小:867.50KB
返回 下载 相关 举报
2023届山东省高密市中考数学仿真试卷含解析.doc_第1页
第1页 / 共21页
2023届山东省高密市中考数学仿真试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2023届山东省高密市中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省高密市中考数学仿真试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|c|,bc0,则原点的位置()A点A的左侧B点A点B之间C点B点C之间D点C的右侧2如果

2、关于x的分式方程有负分数解,且关于x的不等式组的解集为x0,c0,这与bc0不符,故不能选B;C选项中,若原点在B、C之间,则且bc0,与已知条件一致,故可以选C;D选项中,若原点在点C右侧,则b0,c0,这与bc0不符,故不能选D.故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.2、D【解析】解:,由得:x2a+4,由得:x2,由不等式组的解集为x2,得到2a+42,即a3,分式方程去分母得:a3x3=1x,把a=3代入整式方程得:3x6=1x,即,符合题意;把a=2代入整式方程得

3、:3x5=1x,即x=3,不合题意;把a=1代入整式方程得:3x4=1x,即,符合题意;把a=0代入整式方程得:3x3=1x,即x=2,不合题意;把a=1代入整式方程得:3x2=1x,即,符合题意;把a=2代入整式方程得:3x1=1x,即x=1,不合题意;把a=3代入整式方程得:3x=1x,即,符合题意;把a=4代入整式方程得:3x+1=1x,即x=0,不合题意,符合条件的整数a取值为3;1;1;3,之积为1故选D3、D【解析】先求出不等式的解集,再在数轴上表示出来即可【详解】移项得,2x1+1,合并同类项得,2x2,x的系数化为1得,x1在数轴上表示为:故选D【点睛】本题考查了解一元一次不等

4、式,熟练掌握运算法则是解题的关键4、B【解析】分析:分h2、2h5和h5三种情况考虑:当h2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2h5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论综上即可得出结论详解:如图,当h2时,有-(2-h)2=-1, 解得:h1=1,h2=3(舍去);当2h5时,y=-(x-h)2的最大值为0,不符合题意;当h5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=1综上所述:h的值为1或1故选B点睛:本题考查了二次函数的最值以及二次函数的性质,分

5、h2、2h5和h5三种情况求出h值是解题的关键5、A【解析】设每支百合花x元,每支玫瑰花y元,根据总价单价购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y(6x+5y)8,整理得:2x2y8,2支百合花比2支玫瑰花多8元故选:A【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键6、B【解析】根据整式的加减乘除乘方运算法则逐一运算即可。【详解】A. ,故A选项错误。 B. ,故B选项正确。C.,故C选项错误。 D. ,故D选项错误。故答案选B.【点睛】本题考查

6、整式加减乘除运算法则,只需熟记法则与公式即可。7、B【解析】由折线统计图和条形统计图对各选项逐一判断即可得【详解】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为5002.0%25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B【点睛】本题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;折线统计

7、图表示的是事物的变化情况8、C【解析】连接AD,由于ABC是等腰三角形,点D是BC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论【详解】如图,连接ADABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=4AD=12,解得:AD=6(cm)EF是线段AB的垂直平分线,点B关于直线EF的对称点为点A,AD的长为BM+MD的最小值,BDM的周长最短=(BM+MD)+BD=AD+BC=6+4=6+2=8(cm)故选C【点睛】本题考查的是轴对称最短路线问题,

8、熟知等腰三角形三线合一的性质是解答此题的关键9、C【解析】首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若dr,则直线与与圆相离.【详解】x2-4x-12=0,(x+2)(x-6)=0,解得:x1=-2(不合题意舍去),x2=6,点O到直线l距离是方程x2-4x-12=0的一个根,即为6,点O到直线l的距离d=6,r=5,dr,直线l与圆相离.故选:C【点睛】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.10、D【解析】试题分析:、是一元二次方程的两个根,=-1,故选D考点:根与系数的关系二、填空题(本大题共6个小题,每小题3分,共18分)11

9、、1【解析】依题意有:(1+2+a+4+5)5=1,解得a=1故答案为112、8。【解析】根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论:由函数图象得:进水管每分钟的进水量为:204=5升。设出水管每分钟的出水量为a升,由函数图象,得,解得:。关闭进水管后出水管放完水的时间为:(分钟)。13、x1【解析】分析:根据二次根式有意义的条件解答即可.详解:二次根式有意义,被开方数为非负数,1 -x0,解得x1.故答案为x1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.14、1【解析】由n行有n个数,可得出第10行第8个数

10、为第1个数,结合奇数为正偶数为负,即可求出结论【详解】解:第1行1个数,第2行2个数,第3行3个数,第9行9个数,第10行第8个数为第1+2+3+9+8=1个数又第2n1个数为2n1,第2n个数为2n,第10行第8个数应该是1故答案为:1【点睛】本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键15、详见解析.【解析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【详解】()解不等式,得:x1;()解不等式,得:x1;()把不等式和的解集在数轴上表示出来:()原不等式组的解集为:1x1,故答案为:x1、x1、1x1【点睛】本题考

11、查了解一元一次不等式组的概念.16、3【解析】3、3, 2、1、3、0、4、x的平均数是1,3+32+1+3+0+4+x=8x=2,一组数据3、3, 2、1、3、0、4、2,众数是3.故答案是:3.三、解答题(共8题,共72分)17、x1,1【解析】先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可【详解】解:原式x1,根据分式的意义可知,x0,且x1,当x2时,原式211【点睛】本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且

12、除数不能为零18、(1)yx2+2x3;(2)点P的坐标为(2,21)或(2,5);(3)【解析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|然后依据SPOC2SBOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可【详解】解:(1)抛物线与x轴的交点A(3,0),对称轴为直线x1,抛物线与x轴的交点B的坐标为

13、(1,0),设抛物线解析式为ya(x+3)(x1),将点C(0,3)代入,得:3a3,解得a1,则抛物线解析式为y(x+3)(x1)x2+2x3;(2)设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|SPOC2SBOC,OC|a|2OCOB,即3|a|231,解得a2当a2时,点P的坐标为(2,21);当a2时,点P的坐标为(2,5)点P的坐标为(2,21)或(2,5)(3)如图所示:设AC的解析式为ykx3,将点A的坐标代入得:3k30,解得k1,直线AC的解析式为yx3设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3)QDx3( x2+2x3)x3x22x+3x2

14、3x(x2+3x+)(x+)2+, 当x时,QD有最大值,QD的最大值为【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用19、(1);(2)2m;(1)m=6或m=1【解析】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(1)情形1,四边形PMPN能成为正方形作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角

15、三角形时,四边形PMPN是正方形,推出PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,可得M(m+2,m2),理由待定系数法即可解决问题;情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),利用待定系数法即可解决问题【详解】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,抛物线C的函数表达式为(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到 ,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2m,满足条件的m的取值范围为2m(1)结论:四边形PMP

16、N能成为正方形理由:1情形1,如图,作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,M(m+2,m2),点M在上,解得m=1或1(舍弃),m=1时,四边形PMPN是正方形情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),把M(m2,2m)代入中,解得m=6或0(舍弃),m=6时,四边形PMPN是正方形综上所述:m=6或m=1时,四边形PMPN是正方形20、(1);(2)无变化,证明见解析;(3)2+2 +1或1.【解析】(1)先判断出DECB,

17、进而得出比例式,代值即可得出结论;先得出DEBC,即可得出,再用比例的性质即可得出结论;(2)先CAD=BAE,进而判断出ADCAEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD【详解】解:(1)当=0时,在RtABC中,AC=BC=2,A=B=45,AB=2,AD=DE=AB=,AED=A=45,ADE=90,DECB,故答案为,当=180时,如图1,DEBC,即:,故答案为;(2)当0360时,的大小没有变化,理由:CAB=DAE,CAD=BAE,ADCAEB,;(3)当点E在BA的延长线时,BE最大,在RtADE中,AE=

18、AD=2,BE最大=AB+AE=2+2;如图2,当点E在BD上时,ADE=90,ADB=90,在RtADB中,AB=2,AD=,根据勾股定理得,BD=,BE=BD+DE=+,由(2)知,CD=+1,如图3, 当点D在BE的延长线上时,在RtADB中,AD=,AB=2,根据勾股定理得,BD=,BE=BDDE=,由(2)知,CD=1故答案为 +1或1【点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DEBC,解(2)的关键是判断出ADCAEB,解(3)关键是作出图形求出BD,是一道中等难度的题

19、目21、(1)证明见解析;(2);3【解析】试题分析:(1)连接OD、OE、ED先证明AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;(2)连接OD、DF先由OBDABC,求出O的半径,然后证明ADCAFD,得出AD2=ACAF,进而求出AD试题解析:(1)证明:如图1,连接OD、OE、EDBC与O相切于一点D,ODBC,ODB=90=C,ODAC,B=30,A=60,OA=OE,AOE是等边三角形,AE=AO=0D,四边形AODE是平行四边形,OA=OD,四边形AODE是菱形(2)解:设O的半径为rODAC,OBDABC,即8

20、r=6(8r)解得r=,O的半径为如图2,连接OD、DFODAC,DAC=ADO,OA=OD,ADO=DAO,DAC=DAO,AF是O的直径,ADF=90=C,ADCAFD,AD2=ACAF,AC=6,AF=,AD2=6=45,AD=3点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等熟练掌握相关图形的性质及判定是解本题的关键考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质22、(1),(2)ACCD(3)BMC=41【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得

21、C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明OACBCD,再由角的和差可求得OAC+BCA=90,可证得ACCD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出ACD为等腰直角三角形,则可求得答案本题解析:(1)A(1,0),OA=1tanOAC=,解得OC=2,C(0,2),BD=OC=2,B(0,3),BDx轴,D(2,3),m=23=6,y=,设直线AC关系式为y=kx+b,过A(1,0),C(0,2),解得,y=x2;(2)B(0,3),C(0,2),BC=1=OA,在OAC和BCD中,OACBCD(SAS),AC=CD,OAC=BCD,BCD+B

22、CA=OAC+BCA=90,ACCD;(3)BMC=41如图,连接AD,AE=OC,BD=OC,AE=BD,BDx轴,四边形AEBD为平行四边形,ADBM,BMC=DAC,OACBCD,AC=CD,ACCD,ACD为等腰直角三角形,BMC=DAC=4123、(1);(2)-1;【解析】(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题【详解】(1)=2-.(2)=-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法24、(1);(2)P(,0);(3)E(,1),在【解析】(1)

23、将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,3),计算求出SAOB=4=则SAOP=SAOB=设点P的坐标为(m,0),列出方程求解即可;(3)先解OAB,得出ABO=30,再根据旋转的性质求出E点坐标为(,1),即可求解【详解】(1)点A(,1)在反比例函数的图象上,k=1=,反比例函数的表达式为;(2)A(,1),ABx轴于点C,OC=,AC=1,由射影定理得=ACBC,可得BC=3,B(,3),SAOB=4=,SAOP=SAOB=设点P的坐标为(m,0),|m|1=,|m|=,P是x轴的负半轴上的点,m=,点P的坐标为(,0);(3)点E在该反比例函数的图象上,理由如下:OAOB,OA=2,OB=,AB=4,sinABO=,ABO=30,将BOA绕点B按逆时针方向旋转60得到BDE,BOABDE,OBD=60,BO=BD=,OA=DE=2,BOA=BDE=90,ABD=30+60=90,而BDOC=,BCDE=1,E(,1),(1)=,点E在该反比例函数的图象上考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁