2023届广东省深圳市深圳外国语达标名校中考二模数学试题含解析.doc

上传人:茅**** 文档编号:87783622 上传时间:2023-04-17 格式:DOC 页数:18 大小:677.50KB
返回 下载 相关 举报
2023届广东省深圳市深圳外国语达标名校中考二模数学试题含解析.doc_第1页
第1页 / 共18页
2023届广东省深圳市深圳外国语达标名校中考二模数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届广东省深圳市深圳外国语达标名校中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省深圳市深圳外国语达标名校中考二模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,向四个形状不同高同为h的水瓶中注水,注满为止如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()ABCD2若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()Am2Bm2Cm2Dm23如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4C6D44如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为( )A(1,4)B(7

3、,4)C(6,4)D(8,3)5下列调查中,最适合采用普查方式的是()A对太原市民知晓“中国梦”内涵情况的调查B对全班同学1分钟仰卧起坐成绩的调查C对2018年央视春节联欢晚会收视率的调查D对2017年全国快递包裹产生的包装垃圾数量的调查6给出下列各数式, 计算结果为负数的有()A1个B2个C3个D4个7如图,点ABC在O上,OABC,OAC=19,则AOB的大小为()A19B29C38D528下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径9在平面直角坐标系

4、中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )A-4或-14B-4或14C4或-14D4或1410如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )AadbcBa+c+2b+dCa+b+14c+dDa+db+c11在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A10B8C5D312如图1,一个扇形纸片的圆心角为90,半径为1如图2,将这张扇形纸片折叠,使点A

5、与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13化简:_14关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_15在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则1=_16如图,点A在双曲线上,点B在双曲线上,且ABx轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 17如图,ABC中,ABBD,点D,E分别是AC,BD上的点,且ABDDCE,若BEC105,则A的度数是_18分解因式=_,=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说

6、明、证明过程或演算步骤19(6分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当PAC为等腰三角形时,直接写出t的值20(6分)如图,已知ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,EAB=DAC=90,连结BD,CE交于点F,设AB=m,BC=n.(1)求证:

7、BDA=ECA(2)若m=,n=3,ABC=75,求BD的长.(3)当ABC=_时,BD最大,最大值为_(用含m,n的代数式表示)(4)试探究线段BF,AE,EF三者之间的数量关系。21(6分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45,旗杆底部B的仰角为20(1)求坡角BCD;(2)求旗杆AB的高度(参考数值:sin200.34,cos200.94,tan200.36)22(8分)在ABCD中,过点D作DEAB于点E,点F在CD上,CF=AE,连

8、接BF,AF(1)求证:四边形BFDE是矩形;(2)若AF平分BAD,且AE=3,DE=4,求tanBAF的值23(8分)我国古代数学著作增删算法统宗记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺求绳索长和竿长24(10分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚“健身达人”小陈为了了解他的好友的运动情况随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(05000步)(说明:“05000”表示大于等于

9、0,小于等于5000,下同),B(500110000步),C(1000115000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了 位好友已知A类好友人数是D类好友人数的5倍请补全条形图;扇形图中,“A”对应扇形的圆心角为 度若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?25(10分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,

10、这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0a200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案26(12分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“非常喜欢”、“ 比较喜欢”、“ 不太喜

11、欢”、“ 很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计现将统计结果绘制成如下两幅不完整的统计图请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是,图中所在扇形对应的圆心角是;(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?27(12分)已知关于x的一元二次方程x2(2m+3)x+m2+21(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x2231+|x1x2|,求实数m的值参考答案一、选择

12、题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,随着水的深度变高,需要的注水量也是均匀升高,水瓶的形状是圆柱,故选:D【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.2、B【解析】根据反比例函数的性质,可得m+10,从而得出m的取值范围【详解】函数的图象在其象限内y的值随x值的增大而增大,m+10,解得m-1故选B3、B【解析】由已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=

13、ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答4、B【解析】如图,经过6次反弹后动点回到出发点(0,3),20186=3362,当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4)故选C5、B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围

14、广适合抽样调查,故D不符合题意;故选:B点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查6、B【解析】;上述各式中计算结果为负数的有2个.故选B.7、C【解析】由AOBC,得到ACB=OAC=19,根据圆周角定理得到AOB=2ACB=38.【详解】AOBC,ACB=OAC,而OAC=19,ACB=19,AOB=2ACB=38故选:C【点睛】本题考查了圆周角定理与平行线的性质解题的关键是掌握在同圆或等圆中,同弧或等

15、弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.8、D【解析】根据切线的判定,圆的知识,可得答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正确;故选:D【点睛】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键9、D【解析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得【详

16、解】一条抛物线的函数表达式为y=x2+6x+m,这条抛物线的顶点为(-3,m-9),关于x轴对称的抛物线的顶点(-3,9-m),它们的顶点相距10个单位长度|m-9-(9-m)|=10,2m-18=10,当2m-18=10时,m=1,当2m-18=-10时,m=4,m的值是4或1故选D【点睛】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系10、A【解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论【详解】解:依题意,得:ba+1,ca+7,da+1A、ada(

17、a+1)1,bca+1(a+7)6,adbc,选项A符合题意;B、a+c+2a+(a+7)+22a+9,b+da+1+(a+1)2a+9,a+c+2b+d,选项B不符合题意;C、a+b+14a+(a+1)+142a+15,c+da+7+(a+1)2a+15,a+b+14c+d,选项C不符合题意;D、a+da+(a+1)2a+1,b+ca+1+(a+7)2a+1,a+db+c,选项D不符合题意故选:A【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键11、B【解析】摸到红球的概率为,解得n=8,故选B12、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出AOD

18、,根据扇形面积公式、三角形面积公式计算,得到答案【详解】解:连接OD,在RtOCD中,OCOD2,ODC30,CD COD60,阴影部分的面积 ,故选:C【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】直接利用二次根式的性质化简求出答案【详解】,故答案为.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键14、k1【解析】根据一元二次方程根的判别式结合题意进行分析解答即可.【详解】关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,=,解得:.故答案为:.【点睛】熟知“在

19、一元二次方程中,若方程有两个不相等的实数根,则=”是解答本题的关键.15、1【解析】试题分析:由三角形的外角的性质可知,1=90+30=1,故答案为1考点:三角形的外角性质;三角形内角和定理16、2【解析】如图,过A点作AEy轴,垂足为E,点A在双曲线上,四边形AEOD的面积为1点B在双曲线上,且ABx轴,四边形BEOC的面积为3四边形ABCD为矩形,则它的面积为31217、85【解析】设A=BDA=x,ABD=ECD=y,构建方程组即可解决问题【详解】解:BABD,ABDA,设ABDAx,ABDECDy,则有,解得x85,故答案为85【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角

20、形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型18、 【解析】此题考查因式分解答案点评:利用提公因式、平方差公式、完全平方公式分解因式三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)a=;(2)1n2;(3)满足条件的时间t为1s,2s,或(3+)或(3)s【解析】试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出

21、t的值试题解析:(1)、解:点C是直线l1:y=x+1与轴的交点, C(0,1),点C在直线l2上, b=1, 直线l2的解析式为y=ax+1, 点B在直线l2上,2a+1=0, a=;(2)、解:由(1)知,l1的解析式为y=x+1,令y=0, x=1,由图象知,点Q在点A,B之间, 1n2(3)、解:如图,PAC是等腰三角形, 点x轴正半轴上时,当AC=P1C时,COx轴, OP1=OA=1, BP1=OBOP1=21=1, 11=1s,当P2A=P2C时,易知点P2与O重合, BP2=OB=2, 21=2s,点P在x轴负半轴时,AP3=AC, A(1,0),C(0,1), AC=, AP

22、3=,BP3=OB+OA+AP3=3+或BP3=OB+OAAP3=3,(3+)1=(3+)s,或(3)1=(3 )s,即:满足条件的时间t为1s,2s,或(3+)或(3)s点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案20、135 m+n 【解析】试题分析:(1)由已知条件证ABDAEC,即可得到BDA=CEA;(2)过点E作EGCB交CB的延长线于点G,由已知条件易得EBG=60,

23、BE=2,这样在RtBEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合ABDAEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;(4)由ABDAEC可得AEC=ABD,结合ABE是等腰直角三角形可得EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.试题解析:(1)ABE和ACD都是等腰直角三角形,且EAB=DAC=90,AE=AB,AC=AD,EAB+BAC=BAC+DAC,即EAC=BAD,EACBAD,BDA=ECA;(2)如下图,过

24、点E作EGCB交CB的延长线于点G,EGB=90,在等腰直角ABE,BAE=90,AB=m= ,ABE=45,BE=2,ABC=75,EBG=180-75-45=60,BG=1,EG=,GC=BG+BC=4,CE=,EACBAD,BD=EC=;(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,BD=EC,BD最大=EC最大=,此时ABC=180-ABE=180-45=135,即当ABC=135时,BD最大=;(4)ABDAEC,AEC=ABD,在等腰直角ABE中,AEC+CEB+ABE=90,ABD+ABE+CEB=90,BFE=180-90=90,EF

25、2+BF2=BE2,又在等腰RtABE中,BE2=2AE2,2AE2=EF2+BF2.点睛:(1)解本题第2小题的关键是过点E作EGCB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在RtEGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.21、旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角之间的关系为:i=tan进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即

26、可本题解析:(1)斜坡BC的坡度i=1:,tanBCD= ,BCD=30;(2)在RtBCD中,CD=BCcosBCD=6=9,则DF=DC+CF=10(米),四边形GDFE为矩形,GE=DF=10(米),AEG=45,AG=DE=10(米),在RtBEG中,BG=GEtanBEG=100.36=3.6(米),则AB=AGBG=103.6=6.4(米).答:旗杆AB的高度为6.4米。22、(1)证明见解析(2) 【解析】分析:(1)由已知条件易得BE=DF且BEDF,从而可得四边BFDE是平行四边形,结合EDB=90即可得到四边形BFDE是矩形;(2)由已知易得AB=5,由AF平分DAB,DC

27、AB可得DAF=BAF=DFA,由此可得DF=AD=5,结合BE=DF可得BE=5,由此可得AB=8,结合BF=DE=4即可求得tanBAF=.详解:(1)四边形ABCD是平行四边形,ABCD,AB=CD, AE=CF,BE=DF, 四边形BFDE是平行四边形 DEAB,DEB=90,四边形BFDE是矩形; (2)在RtBCF中,由勾股定理,得AD =, 四边形ABCD是平行四边形,ABDC,DFA=FAB AF平分DABDAF=FAB, DAF=DFA,DF=AD=5,四边形BFDE是矩形,BE=DF=5,BF=DE=4,ABF=90,AB=AE+BE=8,tanBAF= 点睛:(1)熟悉平

28、行四边形的性质和矩形的判定方法是解答第1小题的关键;(2)能由AF平分DAB,DCAB得到DAF=BAF=DFA,进而推得DF=AD=5是解答第2小题的关键.23、绳索长为20尺,竿长为15尺.【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论【详解】设绳索长、竿长分别为尺,尺,依题意得:解得:,.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键24、(1)30;(2)补图见解析;120;70人.【解析】分析:(1)由B类别人数

29、及其所占百分比可得总人数;(2)设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;用360乘以A类别人数所占比例可得;总人数乘以样本中C、D类别人数和所占比例详解:(1)本次调查的好友人数为620%=30人,故答案为:30;(2)设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:扇形图中,“A”对应扇形的圆心角为360=120,故答案为:120;估计大约6月1日这天行走的步数超过10000步的好友人数为150=70人点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统

30、计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据25、 (1) =100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润A电脑数量+B型电脑每台利润B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100x),即y=(a100)x+50000,分三种情况讨论,当0a100时,y随x的增大而减小

31、,a=100时,y=50000,当100m200时,a1000,y随x的增大而增大,分别进行求解【详解】(1)根据题意,y=400x+500(100x)=100x+50000;(2)100x2x,x,y=100x+50000中k=1000,y随x的增大而减小,x为正数,x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100x),即y=(a100)x+50000,33x60,当0a100时,y随x的增大而减小,当x=34时,y取最大值,即商店购进34台A型电脑和66

32、台B型电脑的销售利润最大a=100时,a100=0,y=50000,即商店购进A型电脑数量满足33x60的整数时,均获得最大利润;当100a200时,a1000,y随x的增大而增大,当x=60时,y取得最大值即商店购进60台A型电脑和40台B型电脑的销售利润最大【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.26、(1)答案见解析;(2)B,54;(3)240人【解析】(1)根据D程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A、B、D程度的人数即可求出C程度的人数,然后分别计算出

33、各程度人数占抽查总人数的百分率,从而补全统计图即可;(2)根据众数的定义即可得出结论,然后利用360乘A程度的人数所占抽查总人数的百分率即可得出结论;(3)利用960乘C程度的人数所占抽查总人数的百分率即可【详解】解:(1)被调查的学生总人数为人,C程度的人数为人,则的百分比为、的百分比为、的百分比为,补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是、图中所在扇形对应的圆心角是故答案为:;(3)该年级学生中对数学学习“不太喜欢”的有人答:该年级学生中对数学学习“不太喜欢”的有240人【点睛】此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键27、

34、(1)m;(2)m2【解析】(1)利用判别式的意义得到(2m+3)24(m2+2)1,然后解不等式即可;(2)根据题意x1+x22m+3,x1x2m2+2,由条件得x12+x2231+x1x2,再利用完全平方公式得(x1+x2)23x1x2311,所以2m+3)23(m2+2)311,然后解关于m的方程,最后利用m的范围确定满足条件的m的值【详解】(1)根据题意得(2m+3)24(m2+2)1,解得m;(2)根据题意x1+x22m+3,x1x2m2+2,因为x1x2m2+21,所以x12+x2231+x1x2,即(x1+x2)23x1x2311,所以(2m+3)23(m2+2)311,整理得m2+12m281,解得m114,m22,而m;所以m2【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,灵活应用整体代入的方法计算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁