《2023届广东省阳江市东平中学中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省阳江市东平中学中考冲刺卷数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若a+|a|=0,则等于()A22aB2a2C2D22已知x2y=3,那么代数式32x+4y的值是( )A3B0C6D9
2、3如图,向四个形状不同高同为h的水瓶中注水,注满为止如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()ABCD4不等式组的解集是()Ax1Bx2C1x2D1x25的绝对值是()ABCD6如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的周长为18,则四边形EFCD的周长为A14B13C12D107如图,在ABC中,点D在AB边上,DEBC,与边AC交于点E,连结BE,记ADE,BCE的面积分别为S1,S2,()A若2ADAB,则3S12S2B若2ADAB,则3S12S2C若2ADAB,则3S12S2D若2ADAB,则3S12S28如图,一张半径
3、为的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )ABCD9在下列条件中,能够判定一个四边形是平行四边形的是( )A一组对边平行,另一组对边相等B一组对边相等,一组对角相等C一组对边平行,一条对角线平分另一条对角线D一组对边相等,一条对角线平分另一条对角线10下列运算正确的是()A2a+3a=5a2 B(a3)3=a9 Ca2a4=a8 Da6a3=a211计算(ab2)3的结果是()Aab5Bab6Ca3b5Da3b612如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb2
4、0;其中正确的结论有()A1个B2个C3个D4个二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,ABCD,点E是CD上一点,AEC40,EF平分AED交AB于点F,则AFE_度.14如图,点D在O的直径AB的延长线上,点C在O上,且AC=CD,ACD=120,CD是O的切线:若O的半径为2,则图中阴影部分的面积为_15若正多边形的一个内角等于140,则这个正多边形的边数是_. 16已知:如图,AB为O的直径,点C、D在O上,且BC6cm,AC8cm,ABD45则图中阴影部分的面积是_. 17某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最
5、喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分 那么,其中最喜欢足球的学生数占被调查总人数的百分比为_%18如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表评估成绩n(分)评定等级频数90n100A280n90B70
6、n80C15n70D6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率20(6分)解方程21(6分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60,眼睛离地面的距离ED为1.5米试帮助小华求出旗杆AB的高度(结果精确到0.1米,).22(8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DEAF,垂足为点E求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF
7、=FC=1,试求的长23(8分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A非常了解;B比较了解;C基本了解;D不了解根据调查统计结果,绘制了不完整的三种统计图表对雾霾了解程度的统计表:对雾霾的了解程度百分比A非常了解5%B比较了解mC基本了解45%D不了解n请结合统计图表,回答下列问题(1)本次参与调查的学生共有 人,m= ,n= ;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是 度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”
8、态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球若摸出的两个球上的数字和为奇数,则小明去;否则小刚去请用树状图或列表法说明这个游戏规则是否公平24(10分)已知:如图,MNQ中,MQNQ(1)请你以MN为一边,在MN的同侧构造一个与MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,B=D求证:CD=AB25(10分)某工厂去年的总收入比总支出多50万元,计划今
9、年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元今年的总收入和总支出计划各是多少万元?26(12分)(1)计算:(2)化简:27(12分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共12个小题,每
10、小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】直接利用二次根式的性质化简得出答案【详解】a+|a|=0,|a|=-a,则a0,故原式=2-a-a=2-2a故选A【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键2、A【解析】解:x2y=3,32x+4y=32(x2y)=323=3;故选A3、D【解析】根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,随着水的深度变高,需要的注水量也是均匀升高,水瓶的形状是圆柱,故选:D【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的
11、关键.4、D【解析】由x1得,x1,由3x51得,3x6,x2,不等式组的解集为1x2,故选D5、C【解析】根据负数的绝对值是它的相反数,可得答案【详解】-=,A错误;-=,B错误;=,D错误;=,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.6、C【解析】平行四边形ABCD,ADBC,AD=BC,AO=CO,EAO=FCO,在AEO和CFO中,AEOCFO,AE=CF,EO=FO=1.5,C四边形ABCD=18,CD+AD=9,C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等
12、,解题关键是将四边形CDEF的周长进行转化.7、D【解析】根据题意判定ADEABC,由相似三角形的面积之比等于相似比的平方解答【详解】如图,在ABC中,DEBC,ADEABC,若1ADAB,即时,此时3S1S1+SBDE,而S1+SBDE1S1但是不能确定3S1与1S1的大小,故选项A不符合题意,选项B不符合题意若1ADAB,即时,此时3S1S1+SBDE1S1,故选项C不符合题意,选项D符合题意故选D【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的
13、一般方法是通过作平行线构造相似三角形8、C【解析】这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积【详解】解:如图:正方形的面积是:44=16;扇形BAO的面积是:, 则这张圆形纸片“不能接触到的部分”的面积是41-4=4-,这张圆形纸片“能接触到的部分”的面积是16-(4-)=12+,故选C【点睛】本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键9、C【解析】A、错误这个四边形有可能是等腰梯形B、错误不满足三角形全等的条件,无法证明相等的一组对边平行C、正确可以利用三角形全等证明平行的一组对边相等故是平行四边形D、错误不满足三角形全等的
14、条件,无法证明相等的一组对边平行故选C10、B【解析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案【详解】A、2a+3a=5a,故此选项错误;B、(a3)3=a9,故此选项正确;C、a2a4=a6,故此选项错误;D、a6a3=a3,故此选项错误故选:B【点睛】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键11、D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可试题解析:(ab2)3=a3(b2)3=a3b1故选D考点:幂的乘方与积的乘方12、C【解析】根据图像可得:a0,b0,c=0,即abc=0
15、,则正确;当x=1时,y0,即a+b+c0,则错误;根据对称轴可得:=,则b=3a,根据a0,bb;则正确;根据函数与x轴有两个交点可得:4ac0,则正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、70.【解析】由平角求出AED的度数,由角平分线得出DEF的度数,再由平行线的性质即可求出AFE的度数.【详解】AEC40,AED180AEC140,EF平分AED,又ABCD,AFEDEF70.故答案为:70【点睛】本题考查的是平行线的性质以及角平分
16、线的定义.熟练掌握平行线的性质,求出DEF的度数是解决问题的关键.14、 【解析】试题分析:连接OC,求出D和COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案连接OC,AC=CD,ACD=120,CAD=D=30,DC切O于C,OCCD,OCD=90,COD=60,在RtOCD中,OCD=90,D=30,OC=2,CD=2,阴影部分的面积是SOCDS扇形COB=22=2,故答案为2考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.15、1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再
17、利用外角和定理求出求边数首先根据求出外角度数,再利用外角和定理求出边数正多边形的一个内角是140,它的外角是:180-140=40,36040=1故答案为1考点:多边形内角与外角16、()cm2 【解析】S阴影=S扇形-SOBD= 52-55=.故答案是: .17、1%【解析】依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比【详解】被调查学生的总数为1020%=50人,最喜欢篮球的有5032%=16人,则最喜欢足球的学生数占被调查总人数的百分比=100%=1%,故答案为:1【点睛】本题主要考查扇形统
18、计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系18、2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),点E在抛物线上,整理得,解得或(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)25;(2)848;(3)【解析】试题分析:(1)由C等级频数为1
19、5除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案试题解析:(1)C等级频数为15,占60%,m=1560%=25;(2)B等级频数为:252156=2,B等级所在扇形的圆心角的大小为:360=28.8=2848;(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:共有12种等可能的结果,其中至少有一家是A等级的有10种情况,其中至少有一家是A等级的概率为:=考点:频数(率)分布
20、表;扇形统计图;列表法与树状图法20、x=-1【解析】解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x= -1检验:x= -1时,x-20原方程的解是x= -1首先去掉分母,观察可得最简公分母是(x2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解21、11.9米【解析】先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论【详解】BD=CE=6m,AEC=60,AC=CEtan60=6=661.73210.4m,AB=AC+DE=10.4+1.5=11.9m答:旗杆AB的高度是11.9米.22、(1)详见解析;(2)
21、.【解析】四边形ABCD是矩形,B=C=90,AB=CD,BC=AD,ADBC,EAD=AFB,DEAF,AED=90,在ADE和FAB中,ADEFAB(AAS),AE=BF=1BF=FC=1BC=AD=2故在RtADE中,ADE=30,DE=,的长=.23、解:(1)400;15%;35%(2)1(3)D等级的人数为:40035%=140,补全条形统计图如图所示:(4)列树状图得:从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,小明参加的概率为:P(数字之和为奇数);小刚参加的概率为:P(数字之和为偶数)P(数字之和为奇数)P(数字之和为偶数),游戏规则不公平【解析】(1)根
22、据“基本了解”的人数以及所占比例,可求得总人数:18045%=400人在根据频数、百分比之间的关系,可得m,n的值:(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360的比可得出统计图中D部分扇形所对应的圆心角:36035%=1(3)根据D等级的人数为:40035%=140,据此补全条形统计图(4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平24、(1)作图见解析;(2)证明书见解析.【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则M
23、NF为所画三角形(2)延长DA至E,使得AE=CB,连结CE证明EACBCA,得:B =E,AB=CE,根据等量代换可以求得答案【详解】解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求(2)如图,延长DA至E,使得AE=CB,连结CEACB +CAD =180,DACDAC +EAC =180,BACBCA =EAC.在EAC和BAC中,AECE,ACCA,EACBCN,AECEACBCA (SAS).B=E,AB=CE.B=D,D=E.CD=CE,CD=AB考点:1.尺规作图;2.全等三角形的判定和性质25、今年的总收入为220万
24、元,总支出为1万元【解析】试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论试题解析:设去年的总收入为x万元,总支出为y万元根据题意,得,解这个方程组,得,(1+10%)x=220,(1-20%)y=1答:今年的总收入为220万元,总支出为1万元26、(1);(2)-1;【解析】(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题【详解】(1)=2-.(2)=-1【点睛】本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法2
25、7、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用工作时间+乙队每天所需费用工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5145,解得:m10,答:至少安排甲队工作10天【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式