2023届广东省揭阳市产业园区重点名校毕业升学考试模拟卷数学卷含解析.doc

上传人:茅**** 文档编号:87783519 上传时间:2023-04-17 格式:DOC 页数:19 大小:780.50KB
返回 下载 相关 举报
2023届广东省揭阳市产业园区重点名校毕业升学考试模拟卷数学卷含解析.doc_第1页
第1页 / 共19页
2023届广东省揭阳市产业园区重点名校毕业升学考试模拟卷数学卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届广东省揭阳市产业园区重点名校毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省揭阳市产业园区重点名校毕业升学考试模拟卷数学卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1223的结果是()A5B12C6D122

2、九章算术是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )ABCD3如图,矩形ABCD中,AB=8,BC=1点E在边AB上,点F在边CD上,点G、H在对角线AC上若四边形EGFH是菱形,则AE的长是( )A2B3C5D64如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB=8,CD=2,则EC的长为()AB8C

3、D5若关于 x 的一元一次不等式组 无解,则 a 的取值范围是( )Aa3Ba3Ca3Da36下列命题中,真命题是()A如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离7如图是一个由4个相同的正方体组成的立体图形,它的主视图是()ABCD82017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为()A0.3161010B0.3161011C3.161010D3

4、.1610119小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图根据图中信息,下列说法:这栋居民楼共有居民140人每周使用手机支付次数为2835次的人数最多有的人每周使用手机支付的次数在3542次每周使用手机支付不超过21次的有15人其中正确的是( )ABCD10如图,在矩形ABCD中,对角线AC,BD相交于点O,AEBD,垂足为E,AE=3,ED=3BE,则AB的值为()A6B5C2D3二、填空题(共7小题,每小题3分,满分21分)11一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_12如图,在ABC中,点D、E分别在AB、AC上,

5、且DEBC,已知AD2,DB4,DE1,则BC_13在矩形ABCD中,AB=4,BC=9,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A,若点A到矩形较长两对边的距离之比为1:3,则AE的长为_14函数中自变量的取值范围是_15某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在22.5小时之间的学生数大约是全体学生数的_(填百分数)16某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回 元(用含a的代数式表示)17如果关于x的一

6、元二次方程有两个不相等的实数根,那么的取值范围是_.三、解答题(共7小题,满分69分)18(10分)阅读 (1)阅读理解:如图,在ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180得到EBD),把AB,AC,2AD集中在ABE中,利用三角形三边的关系即可判断中线AD的取值范围是_; (2)问题解决:如图,在ABC中,D是BC边上的中点,DEDF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CFEF; (3)问题拓展:如图,在四边形ABCD中,B+D=180,CB

7、=CD,BCD=140,以C为顶点作一个70角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明19(5分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计)20(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)

8、甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?21(10分)问题:将菱形的面积五等分小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题如图,点O是菱形ABCD的对角线交点,AB5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整(1)在AB边上取点E,使AE4,连接OA,OE;(2)在BC边上取点F,使BF_,连接OF;(3)在CD边上取点G,使CG_,连接OG;(4)在DA

9、边上取点H,使DH_,连接OH由于AE_可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA22(10分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.23(12分)在ABC中,AB=AC,BAC=,点P是ABC内一点,且PAC+PCA=,连接PB,试探究PA、PB、PC满足的等量关系(1)当=60时,将ABP绕点A逆时针旋转60得到ACP,连接PP,如图1所示由ABPACP可以证得

10、APP是等边三角形,再由PAC+PCA=30可得APC的大小为 度,进而得到CPP是直角三角形,这样可以得到PA、PB、PC满足的等量关系为 ;(2)如图2,当=120时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为 24(14分)已知ABC 中,AD 是BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长线于点 H(1)如图 1,若BAC=60直接写出B 和ACB 的度数;若 AB=2,求 AC 和 AH 的长;(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明参考答案一、选择题

11、(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】先算乘方,再算乘法即可【详解】解:223431故选:B【点睛】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的2、D【解析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两

12、,据此可知7x+7y=18,所以方程组错误,故选:D【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质3、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EFAC;利用”AAS或ASA”易证FMCEMA,根据全等三角形的性质可得AM=MC;在RtABC中,由勾股定理求得AC=,且tanBAC=;在RtAME中,AM=AC=,tanBAC=可得EM=;在RtAME中,由勾股定理求得AE=2故答案选C考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数4、D【解析】O的半径OD弦AB于点C,AB=8,AC=AB=1设

13、O的半径为r,则OC=r2,在RtAOC中,AC=1,OC=r2,OA2=AC2+OC2,即r2=12+(r2)2,解得r=2AE=2r=3连接BE,AE是O的直径,ABE=90在RtABE中,AE=3,AB=8,在RtBCE中,BE=6,BC=1,故选D5、A【解析】先求出各不等式的解集,再与已知解集相比较求出 a 的取值范围【详解】由 xa0 得,xa;由 1x12(x+1)得,x1,此不等式组的解集是空集,a1 故选:A【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键6、D【解析】根据两圆的位置关系、直线和圆的位置关系判

14、断即可【详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题; 故选:D【点睛】本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当dR+r时两圆外离;当d=R+r时两圆外切;当R-rdR+r(Rr)时两圆相交;当d=R-r(Rr)时两圆内切;当0dR-r(Rr)时两圆内含7、D【解析】从正面看

15、,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】316000000003.161故选:C【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示.9、B【解析】根据直方图表示的意义求得统计的总人数,

16、以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:这栋居民楼共有居民3101522302520125人,此结论错误;每周使用手机支付次数为2835次的人数最多,此结论正确;每周使用手机支付的次数在3542次所占比例为,此结论正确;每周使用手机支付不超过21次的有3101528人,此结论错误;故选:B【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据10、C【解析】由在矩形ABCD中,AEBD于E,BE:ED=1:3,易证得OAB是等边三角形,继而

17、求得BAE的度数,由OAB是等边三角形,求出ADE的度数,又由AE=3,即可求得AB的长【详解】四边形ABCD是矩形,OB=OD,OA=OC,AC=BD,OA=OB,BE:ED=1:3,BE:OB=1:2,AEBD,AB=OA,OA=AB=OB,即OAB是等边三角形,ABD=60,AEBD,AE=3,AB=,故选C【点睛】此题考查了矩形的性质、等边三角形的判定与性质以及含30角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明OAB是等边三角形是解题关键二、填空题(共7小题,每小题3分,满分21分)11、37【解析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个

18、位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,这个两位数为:37【点睛】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.12、1【解析】先由DEBC,可证得ADEABC,进而可根据相似三角形得到的比例线段求得BC的长【详解】解:DEBC,ADEABC,DE:BCAD:AB,AD2,DB4,ABAD+BD6,1:BC2:6,BC1,故答案为:1【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形

19、13、或【解析】由,得,所以.再以和两种情况分类讨论即可得出答案.【详解】因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.若点在矩形ABCD的内部时,如图则GF=AB=4,由可知.又.又.若则,.则.若则,.则 .故答案或.【点睛】本题主要考查了翻折问题和相似三角形判定,灵活运用是关键错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点AA到矩形较长两对边的距离之比为1:3,需要分AM:AN=1:3,AM:AN=1:3和AM:AN=3:1,AM:AN=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.1

20、4、x2且x1【解析】解:根据题意得:且x10,解得:且 故答案为且15、【解析】用被抽查的100名学生中参加社会实践活动时间在22.5小时之间的学生除以抽查的学生总人数,即可得解【详解】由频数分布直方图知,22.5小时的人数为100(8+24+30+10)=28,则该校双休日参加社会实践活动时间在22.5小时之间的学生数大约是全体学生数的百分比为100%=28%故答案为:28%【点睛】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确

21、16、(50-3a).【解析】试题解析:购买这种售价是每千克a元的水果3千克需3a元,根据题意,应找回(50-3a)元考点:列代数式.17、k且k1【解析】由题意知,k1,方程有两个不相等的实数根,所以1,=b2-4ac=(2k+1)2-4k2=4k+11又方程是一元二次方程,k1,k-1/4 且k1三、解答题(共7小题,满分69分)18、(1)2AD8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【解析】试题分析:(1)延长AD至E,使DE=AD,由SAS证明ACDEBD,得出BE=AC=6,在ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至

22、点M,使DM=DF,连接BM、EM,同(1)得BMDCFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在BME中,由三角形的三边关系得出BE+BMEM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出NBC=D,由SAS证明NBCFDC,得出CN=CF,NCB=FCD,证出ECN=70=ECF,再由SAS证明NCEFCE,得出EN=EF,即可得出结论试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图所示:AD是BC边上的中线,BD=CD,在BDE和CDA中,BD=CD,BDE=CDA,DE=AD,BDECDA(SAS),BE=AC=6,在ABE中,由三角形

23、的三边关系得:ABBEAEAB+BE,106AE10+6,即4AE16,2AD8;故答案为2AD8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图所示:同(1)得:BMDCFD(SAS),BM=CF,DEDF,DM=DF,EM=EF,在BME中,由三角形的三边关系得:BE+BMEM,BE+CFEF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:ABC+D=180,NBC+ABC=180,NBC=D,在NBC和FDC中,BN=DF,NBC =D,BC=DC,NBCFDC(SAS),CN=CF,NCB=FCD,BCD=140,ECF=70

24、,BCE+FCD=70,ECN=70=ECF,在NCE和FCE中,CN=CF,ECN=ECF,CE=CE,NCEFCE(SAS),EN=EF,BE+BN=EN,BE+DF=EF考点:全等三角形的判定和性质;三角形的三边关系定理.19、44cm【解析】解:如图,设BM与AD相交于点H,CN与AD相交于点G,由题意得,MH=8cm,BH=40cm,则BM=32cm,四边形ABCD是等腰梯形,AD=50cm,BC=20cm,EFCD,BEMBAH,即,解得:EM=1EF=EMNFBC=2EMBC=44(cm)答:横梁EF应为44cm根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长

25、度,再由BEMBAH,可得出EM,继而得出EF的长度20、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【解析】(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论.【详解】(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x3)万元,则,解得x=1经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设

26、甲种套房提升a套,则乙种套房提升(80a)套,则209025a+1(80a)2096,解得48a2共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套设提升两种套房所需要的费用为y万元,则y=25a+1(80a)=3a+2240,k=3,当a取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【点睛】本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问

27、的必要过程21、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA,进一步求得SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA即可【详解】(1)在AB边上取点E,使AE4,连接OA,OE;(2)在BC边上取点F,使BF3,连接OF;(3)在CD边上取点G,使CG2,连接OG;(4)在DA边上取点H,使DH1,连接OH由于AEEBBFFCCGGDDHHA可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA故答案为:3,2,1

28、;EB、BF;FC、CG;GD、DH;HA【点睛】此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.22、(1)直线的解析式为:.(2)平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式(2)设O2平移t秒后到O3处与O1第一次外切于点P,O3与x轴相切于D1点,连接O1O3,O3D1在直角O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间【详解】(1)由题意得,点坐标为.在中,点的坐标为.设直线的解析式为,由过、两点,得,解得,直线的解析式为:.(2)如图,设平移秒后到处与

29、第一次外切于点,与轴相切于点,连接,.则,轴,在中,.,(秒),平移的时间为5秒.【点睛】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的23、(1)150,(1)证明见解析(3) 【解析】(1)根据旋转变换的性质得到PAP为等边三角形,得到PPC90,根据勾股定理解答即可;(1)如图1,作将ABP绕点A逆时针旋转110得到ACP,连接PP,作ADPP于D,根据余弦的定义得到PPPA,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可试题解析:【详解】解:(1)ABPACP,APAP,由旋转变换的性质可知

30、,PAP60,PCPB,PAP为等边三角形,APP60,PACPCA60 30,APC150,PPC90,PP1PC1PC1,PA1PC1PB1,故答案为150,PA1PC1PB1;(1)如图,作,使,连接,过点A作AD于D点,即,ABAC,. , AD,.在Rt中,.,.在Rt中,.;(3)如图1,与(1)的方法类似,作将ABP绕点A逆时针旋转得到ACP,连接PP,作ADPP于D,由旋转变换的性质可知,PAP,PCPB,APP90,PACPCA,APC180,PPC(180)(90)90,PP1PC1PC1,APP90,PDPAcos(90)PAsin,PP1PAsin,4PA1sin1PC

31、1PB1,故答案为4PA1sin1PC1PB1【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键24、(1)45,;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC证明见解析.【解析】(1)先根据角平分线的定义可得BAD=CAD=30,由等腰三角形的性质得B=75,最后利用三角形内角和可得ACB=45;如图 1,作高线 DE,在 RtADE 中,由DAC=30,AB=AD=2 可得 DE=1,AE=, 在 RtCDE 中,由ACD=45,DE=1,可得 EC=1,AC= +1,同理可得 A

32、H 的长;(2)如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH,易证ACHAFH,则 AC=AF,HC=HF, 根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论【详解】(1)AD 平分BAC,BAC=60,BAD=CAD=30,AB=AD,B=75,ACB=1806075=45;如图 1,过 D 作 DEAC 交 AC 于点 E, 在 RtADE 中,DAC=30,AB=AD=2,DE=1,AE=,在 RtCDE 中,ACD=45,DE=1,EC=1,AC=+1,在 RtACH 中,DAC=30,CH=AC=AH=;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC证明:如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH 易证ACHAFH,AC=AF,HC=HF,GHBC,AB=AD,ABD=ADB,AGH=AHG,AG=AH,AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁