2023届江苏省南京市江宁区湖熟片达标名校中考考前最后一卷数学试卷含解析.doc

上传人:茅**** 文档编号:87783252 上传时间:2023-04-17 格式:DOC 页数:20 大小:1.06MB
返回 下载 相关 举报
2023届江苏省南京市江宁区湖熟片达标名校中考考前最后一卷数学试卷含解析.doc_第1页
第1页 / 共20页
2023届江苏省南京市江宁区湖熟片达标名校中考考前最后一卷数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2023届江苏省南京市江宁区湖熟片达标名校中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省南京市江宁区湖熟片达标名校中考考前最后一卷数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1下列图形中,是轴对称图形但不是中心对称图形的是( )ABCD2若关于x的不等式组只有5个整数解,则a的取值范围( )ABCD3下列各曲线中表示y是x的函数的是

2、()ABCD4已知点A、B、C是直径为6cm的O上的点,且AB=3cm,AC=3 cm,则BAC的度数为()A15B75或15C105或15D75或1055中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()ABCD6下列运算中,正确的是 ( )Ax2+5x2=6x4Bx3CD7钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )ABCD8下列图形中,主视图

3、为的是()ABCD9如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD10在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了如计算89时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则89=107+2=1那么在计算67时,左、右手伸出的手指数应该分别为( )A1,2B1,3C4,2D4,3二、填空题(本大题共6个小题,每小题3分,共18分)11安全问题大于天,为加大宣传力度,提

4、高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:互相关心;互相提醒;不要相互嬉水;相互比潜水深度;选择水流湍急的水域;选择有人看护的游泳池小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_12为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_13已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1x2时,y1与y2的大小关系为_.14正多边形的一个外角是60,边长是2,则这个正多边形的面积为_ .15如图

5、,ABC内接于O,DA、DC分别切O于A、C两点,ABC=114,则ADC的度数为_16已知是二元一次方程组的解,则m+3n的立方根为_三、解答题(共8题,共72分)17(8分)已知如图RtABC和RtEDC中,ACB=ECD=90,A,C,D在同一条直线上,点M,N,F分别为AB,ED,AD的中点,B=EDC=45, (1)求证MF=NF(2)当B=EDC=30,A,C,D在同一条直线上或不在同一条直线上,如图,图这两种情况时,请猜想线段MF,NF之间的数量关系(不必证明) 18(8分)先化简,再求值:,其中的值从不等式组的整数解中选取.19(8分)为了解某校落实新课改精神的情况,现以该校九

6、年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 (2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.20(8分)已知,抛物线(为常数)(1)抛物线的顶点坐标为( , )(用含的代数式表示);(2)若抛物线经过点

7、且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;(3)如图2,规矩的四条边分别平行于坐标轴,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 21(8分)已知关于x的一元二次方程3x26x+1k=0有实数根,k为负整数求k的值;如果这个方程有两个整数根,求出它的根22(10分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90得到线段BC,抛物线y=ax2+bx+c经过点C(1)如图1,若抛物线经过点A和D(2,0)求点C的坐标及该抛物线解析式;在抛物线上是否存在点P,使得POB=BAO,若存在,请求出所有满

8、足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a0)经过点E(2,1),点Q在抛物线上,且满足QOB=BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围23(12分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;(2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值(3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由24解方程参考

9、答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.2、A【解析】分别解两个不等式得到得x20和x3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2ax20,且整数解为15、16、17、18、19,得到143-2a15,然后再解关于a的不等式组即可【详解】解得x20解得x3-2a,不等式组只有5个整数解,不等式组的解集为3-2ax20,1

10、43-2a15,故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式143-2a15是解此题的关键3、D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确故选D4、C【解析】解:如图1AD为直径,ABD=ACD=90在RtABD中,AD=6,AB=3,则BDA=30,BAD=60在RtABD中,AD=6,AC=3,CAD=45,则BAC=105;如图2,AD为直径,ABD=ABC=90在RtABD中,AD=6,AB=3,则BDA=30,BAD=60在RtABC中,AD=6,AC=3,CAD=4

11、5,则BAC=15故选C点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用5、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解: EFAB, CEFCAB, ,故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.6、C【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;D.,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底

12、数幂的乘除运算,解答本题的关键是正确掌握运算法则.7、A【解析】根据轴对称图形的概念求解解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A“点睛”本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合8、B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置9、A【解析】解:AE平分BAD,D

13、AE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键10、A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可解:一只手伸出1,未伸

14、出4,另一只手伸出2,未伸出3,伸出的和为310=30,30+43=42,故选A点评:此题是定义新运算题型通过阅读规则,得出一般结论解题关键是对号入座不要找错对应关系二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据事件的描述可得到描述正确的有,即可得到答案.【详解】共有6张纸条,其中正确的有互相关心;互相提醒;不要相互嬉水;选择有人看护的游泳池,共4张,抽到内容描述正确的纸条的概率是, 故答案为:【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.12、6n+1【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火

15、柴棒,第1个图形有14618根火柴棒,第3个图形有10618根火柴棒,第n个图形有6n+1根火柴棒13、y1y1【解析】分析:直接利用一次函数的性质分析得出答案详解:直线经过第一、二、四象限,y随x的增大而减小,x1x1,y1与y1的大小关系为:y1y1故答案为:点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键14、6【解析】多边形的外角和等于360,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解【详解】正多边形的边数是:36060=6.正六边形的边长为2cm,由于正六边形可分成六个全等的等边三角形,且等边三角形的边长与正六边形的边长相等,

16、所以正六边形的面积.故答案是:.【点睛】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.15、48【解析】如图,在O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出AKC的度数,利用圆周角定理可求出AOC的度数,由切线性质可知OAD=OCB=90,可知ADC+AOC=180,即可得答案.【详解】如图,在O上取一点K,连接AK、KC、OA、OC四边形AKCB内接于圆,AKC+ABC=180,ABC=114,AKC=66,AOC=2AKC=132,DA、DC分别切O于A、C两点,OAD=OCB=90,ADC+AOC=18

17、0,ADC=48故答案为48【点睛】本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.16、3【解析】把x与y的值代入方程组求出m与n的值,即可确定出所求【详解】解:把代入方程组得:相加得:m+3n=27,则27的立方根为3,故答案为3【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程左右两边相等的未知数的值三、解答题(共8题,共72分)17、(1)见解析;(2)MF= NF.【解析】(1)连接AE,BD,先证明ACE和BCD全等,然后得到A

18、E=BD,然后再通过三角形中位线证明即可.(2)根据图(2)(3)进行合理猜想即可.【详解】解:(1)连接AE,BD在ACE和BCD中 ACEBCDAE=BD又点M,N,F分别为AB,ED,AD的中点MF=BD,NF=AEMF=NF(2) MF= NF.方法同上.【点睛】本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.18、-2.【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可试题解析:原式=解得-1x,不等式组的整数解为-1,0,1,2 若分式有意义,只能取x=2,原式=-=2【点睛】本题考查

19、的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助19、(1)7、30%;(2)补图见解析;(3)105人;(3)【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解试题解析:解:(1)本次调查的总人数为1025%=40(人),参加音乐类活动的学生人数为4017.5%=7人,参加球类活动的

20、人数的百分比为100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20、(1);(2)图象见解析,或;(3)【解析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,

21、然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求【详解】解:(1),抛物线的顶点的坐标为故答案为:(2)将代入抛物线的解析式得:解得:,抛物线的解析式为抛物线的大致图象如图所示:将代入得:,解得:或抛物线与反比例函数图象的交点坐标为或将代入得:,将代入得:,综上所述,反比例函数的表达式为或(3)设点的坐标为,则点的坐标为,的坐标为的长随的增大而减小矩形在其对称轴的左侧,抛物线的对称轴为,

22、当时,的长有最小值,的最小值的长度不变,当最小时,有最小值的最小值故答案为:【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键21、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为x2=x2=2【点睛】本题考

23、查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法22、(1)y=x2+x+3;P( ,)或P( ,);(2) a1;【解析】(1)先判断出AOBGBC,得出点C坐标,进而用待定系数法即可得出结论;分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)的方法,借助图象即可得出结论【详解】(1)如图2,A(1,3),B(1,1),OA=3,OB=1,由旋转知,ABC=91,AB=CB,ABO+CB

24、E=91,过点C作CGOB于G,CBG+BCG=91,ABO=BCG,AOBGBC,CG=OB=1,BG=OA=3,OG=OB+BG=4C(4,1),抛物线经过点A(1,3),和D(2,1),抛物线解析式为y=x2+x+3;由知,AOBEBC,BAO=CBF,POB=BAO,POB=CBF,如图1,OPBC,B(1,1),C(4,1),直线BC的解析式为y=x,直线OP的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍)P(,);在直线OP上取一点M(3,1),点M的对称点M(3,1),直线OP的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍),P(,);(2

25、)同(1)的方法,如图3,抛物线y=ax2+bx+c经过点C(4,1),E(2,1),抛物线y=ax26ax+8a+1,令y=1,ax26ax+8a+1=1,x1x2=符合条件的Q点恰好有2个,方程ax26ax+8a+1=1有一个正根和一个负根或一个正根和1,x1x2=1,a1,8a+11,a,即:a1【点睛】本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.23、 (1);6;(2)有最小值;(3),.【解析】(1)先求出点B,C坐标,利用待定系数法求出抛物线解析式,进而求出点A坐标,即可求出半圆的直径,再构造直

26、角三角形求出点D的坐标即可求出BD;(2)先判断出要求的最小值,只要CG最大即可,再求出直线EG解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG解析式,即可求出CG,结论得证(3)求出线段AC,BC进而判断出满足条件的一个点P和点B重合,再利用抛物线的对称性求出另一个点P【详解】解:(1) 对于直线y=x-3,令x=0,y=-3,B(0,-3),令y=0,x-3=0,x=4,C(4,0),抛物线y=x2+bx+c过B,C两点, 抛物线的解析式为y=;令y=0,=0,x=4或x=-1,A(-1,0),AC=5,如图2,记半圆的圆心为O,连接OD,OA=OD=OC=AC=,OO=OC-O

27、C=4-=,在RtOOD中,OD=2, D(0,2),BD=2-(-3)=5; (2) 如图3,A(-1,0),C(4,0),AC=5,过点E作EGBC交x轴于G,ABF的AF边上的高和BEF的EF边的高相等,设高为h,SABF=AFh,SBEF=EFh,= 的最小值,最小,CFGE, 最小,即:CG最大,EG和果圆的抛物线部分只有一个交点时,CG最大,直线BC的解析式为y=x-3,设直线EG的解析式为y=x+m,抛物线的解析式为y=x2-x-3,联立化简得,3x2-12x-12-4m=0,=144+43(12+4m)=0,m=-6,直线EG的解析式为y=x-6,令y=0,x-6=0,x=8,

28、CG=4, =;(3),.理由:如图1,AC是半圆的直径,半圆上除点A,C外任意一点Q,都有AQC=90,点P只能在抛物线部分上,B(0,-3),C(4,0),BC=5,AC=5,AC=BC,BAC=ABC,当APC=CAB时,点P和点B重合,即:P(0,-3),由抛物线的对称性知,另一个点P的坐标为(3,-3),即:使APC=CAB,点P坐标为(0,-3)或(3,-3)【点睛】本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG最大时,两三角形面积之比最小是解本题的关键24、原分式方程无解.【解析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x1)(x+2),得x(x+2)(x1)(x+2)3即:x2+2xx2x+23整理,得x1检验:当x1时,(x1)(x+2)0,原方程无解【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁