2023届山东省青岛市黄岛十中学中考数学最后冲刺浓缩精华卷含解析.doc

上传人:茅**** 文档编号:87782708 上传时间:2023-04-17 格式:DOC 页数:18 大小:647.50KB
返回 下载 相关 举报
2023届山东省青岛市黄岛十中学中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共18页
2023届山东省青岛市黄岛十中学中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届山东省青岛市黄岛十中学中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省青岛市黄岛十中学中考数学最后冲刺浓缩精华卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(共10小题,每小题3分,共30分)1如图,在平面直角坐标系中,把ABC绕原点O旋转180得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(5,2),则点D的坐标为()A(2,2)B(2,2)C(2,5)D(2,5)2把四张形状大小完全相同的小长方形卡片(如图)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示则图中两块阴影部分周长和是( )ABCD3如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()ABCD4将抛物线y=x26x+21向左平移2个单位后,

3、得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+35在平面直角坐标系内,点P(a,a+3)的位置一定不在()A第一象限B第二象限C第三象限D第四象限6一次函数y=kx1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A(5,3)B(1,3)C(2,2)D(5,1)7由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )ABCD8在,0,1这四个数中,最小的数是ABC0D19如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:AQDP;OA2=OE

4、OP;SAOD=S四边形OECF;当BP=1时,tanOAE= ,其中正确结论的个数是( )A1B2C3D410如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,请根据这组数的规律写出第10个数是_12如图,在中,于点,于点,为边的中点,连接,则下列结论:,为等边三角形,当时,.请将正确结论的序号填在横线上_. 13如图,点A(3,n)在双曲线

5、y=上,过点A作 ACx轴,垂足为C线段OA的垂直平分线交OC于点B,则ABC周长的值是 14在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A,则cosAOA=_15如图,AB是O的直径,CD是O的弦,BAD60,则ACD_16已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_三、解答题(共8题,共72分)17(8分)如图所示,PB是O的切线,B为切点,圆心O在PC上,P=30,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.18(8分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极

6、参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率19(8分)计算:|1|+(1)2018tan6020(8分)如图,在ABC中,点D,E分别在边AB,AC上,AED=B,射线AG分别交线段DE,BC于点F,G,且求证:ADFACG;若,

7、求的值 21(8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?22(10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图

8、所示求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值23(12分)AB为O直径,C为O上的一点,过点C的切线与AB的延长线相交于点D,CACD(1)连接BC,求证:BCOB;(2)E是中点,连接CE,BE,若BE2,求CE的长24如图,BD为ABC外接圆O的直径,且BAE=C求证:AE与O相切于点A;若AEBC,BC=2,AC=2,求AD的长参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:点A,C的坐标分别为(5,

9、2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标2、D【解析】根据题意列出关系式,去括号合并即可得到结果【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键3、D

10、【解析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:几何体的左视图是:故选D.4、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键5、D【解析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数

11、的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.6、C【解析】【分析】根据函数图象的性质判断系数k0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论【详解】一次函数y=kx1的图象的y的值随x值的增大而增大,k0,A、把点(5,3)代入y=kx1得到:k=0,不符合题意;B、把点(1,3)代入y=kx1得到:k=20,不符合题意;C、把点(2,2)代入y=kx1得到:k=0,符合题意;D、把点(5,1)代入y=kx1得到

12、:k=0,不符合题意,故选C【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k0是解题的关键7、D【解析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中【详解】解:从正面看第一层是二个正方形,第二层是左边一个正方形故选A【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大8、A【解析】【分析】根据正数大于零,零大于负数,正数大于一切负数,即可得答案【详解】由正数大于零,零大于负数,得,最小的数是,故选A【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”

13、是解题关键9、C【解析】四边形ABCD是正方形,AD=BC,DAB=ABC=90,BP=CQ,AP=BQ,在DAP与ABQ中, ,DAPABQ,P=Q,Q+QAB=90,P+QAB=90,AOP=90,AQDP;故正确;DOA=AOP=90,ADO+P=ADO+DAO=90,DAO=P,DAOAPO, ,AO2=ODOP,AEAB,AEAD,ODOE,OA2OEOP;故错误;在CQF与BPE中 ,CQFBPE,CF=BE,DF=CE,在ADF与DCE中, ,ADFDCE,SADFSDFO=SDCESDOF,即SAOD=S四边形OECF;故正确;BP=1,AB=3,AP=4,AOPDAP, ,B

14、E=,QE=,QOEPAD, ,QO=,OE=,AO=5QO=,tanOAE=,故正确,故选C点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键10、A【解析】设身高GE=h,CF=l,AF=a,当xa时,在OEG和OFC中,GOE=COF(公共角),AEG=AFC=90,OEGOFC,a、h、l都是固定的常数,自变量x的系数是固定值,这个函数图象肯定是一次函数图象,即是直线;影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大故选A二、填空题(本大题共6个小题,

15、每小题3分,共18分)11、1【解析】解:3=2+1; 5=3+2; 8=5+3; 13=8+5;可以发现:从第三个数起,每一个数都等于它前面两个数的和则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=1故答案为1点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题此类题目难度一般偏大12、【解析】根据直角三角形斜边上的中线等于斜边的一半可判断;先证明ABMACN,再根据相似三角形的对应边成比例可判断;先根据直角三角形两锐角互余的性质求出ABM=ACN=30,再根据三角形的

16、内角和定理求出BCN+CBM=60,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出BPN+CPM=120,从而得到MPN=60,又由得PM=PN,根据有一个角是60的等腰三角形是等边三角形可判断;当ABC=45时,BCN=45,进而判断【详解】BMAC于点M,CNAB于点N,P为BC边的中点,PM=BC,PN=BC,PM=PN,正确;在ABM与ACN中,A=A,AMB=ANC=90,ABMACN,错误;A=60,BMAC于点M,CNAB于点N,ABM=ACN=30,在ABC中,BCN+CBM=180-60-302=60,点P是BC的中点,BMAC,CNAB,PM=PN=PB=PC,B

17、PN=2BCN,CPM=2CBM,BPN+CPM=2(BCN+CBM)=260=120,MPN=60,PMN是等边三角形,正确;当ABC=45时,CNAB于点N,BNC=90,BCN=45,P为BC中点,可得BC=PB=PC,故正确所以正确的选项有:故答案为【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键13、2【解析】先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出ABC的周长=OC+AC【详解】由点

18、A(3,n)在双曲线y=上得,n=2A(3,2)线段OA的垂直平分线交OC于点B,OB=AB则在ABC中, AC=2,ABBC=OBBC=OC=3,ABC周长的值是214、【解析】依据点A(1,2)在x轴上的正投影为点A,即可得到AO=1,AA=2,AO=,进而得出cosAOA的值【详解】如图所示,点A(1,2)在x轴上的正投影为点A,AO=1,AA=2,AO=,cosAOA=,故答案为:【点睛】本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律15、1【解析】连接BD根据圆周角定理可得.【详解】解:如图,连接BDAB是O的直

19、径,ADB90,B90DAB1,ACDB1,故答案为1【点睛】考核知识点:圆周角定理.理解定义是关键.16、20【解析】利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.【详解】底面直径为8,底面半径=4,底面周长=8,由勾股定理得,母线长=5,故圆锥的侧面积=85=20,故答案为:20【点睛】本题主要考查了圆锥的侧面积的计算方法解题的关键是熟记圆锥的侧面展开扇形的面积计算方法三、解答题(共8题,共72分)17、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到OBP=90,进而得到BOP=60,由OC=BO,得到OBC=OCB=30,由等角对等边即可得到结论

20、;(2)由对角线互相垂直平分的四边形是菱形证明即可试题解析:证明:(1)PB是O的切线,OBP=90,POB=90-30=60OB=OC,OBC=OCBPOB=OBC+OCB,OCB=30=P,PB=BC;(2)连接OD交BC于点MD是弧BC的中点,OD垂直平分BC在直角OMC中,OCM=30,OC=2OM=OD,OM=DM,四边形BOCD是菱形18、(1)36 , 40, 1;(2)【解析】(1)先求出跳绳所占比例,再用比例乘以360即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数(2)画出树状图,根据概率公式求解即可【详解】(1)扇形图中跳绳部分

21、的扇形圆心角为360(1-10%-20%-10%-10%)=36度;该班共有学生(2+1+7+4+1+1)10%=40人;训练后篮球定时定点投篮平均每个人的进球数是=1,故答案为:36,40,1(2)三名男生分别用A1,A2,A3表示,一名女生用B表示根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M) 的结果有6种,P(M)=19、1【解析】原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值【详解】|1|+(1)2118tan61=1+1=1【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各

22、运算的运算法则是解题的关键.20、 (1)证明见解析;(2)1.【解析】(1)欲证明ADFACG,由可知,只要证明ADF=C即可(2)利用相似三角形的性质得到,由此即可证明【解答】(1)证明:AED=B,DAE=DAE,ADF=C,ADFACG(2)解:ADFACG,又,121、(4)60;(4)作图见试题解析;(4)4【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数试题解析:(4)被调查的学生人数为:4440%=60

23、(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400=4(人)考点:4条形统计图;4用样本估计总体;4扇形统计图22、(1)300米/分;(2)y=300x+3000;(3)分【解析】(1)由图象看出所需时间再根据路程时间=速度算出小张骑自行车的速度(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD的解析式,列出方程,求解即可.【详解】解:(1)由题意得:(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B(10,0),设直线AB的解析式为:y=kx+b

24、,把A(6,1200)和B(10,0)代入得: 解得: 小张停留后再出发时y与x之间的函数表达式; (3)小李骑摩托车所用的时间: C(6,0),D(9,2400),同理得:CD的解析式为:y=800x4800,则 答:小张与小李相遇时x的值是分【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.23、(2)见解析;(2)2+【解析】(2)连接OC,根据圆周角定理、切线的性质得到ACO=DCB,根据CA=CD得到CAD=D,证明COB=CBO,根据等角对等边证明;(2)连接AE,过点B作BFCE于点F,根据勾股定理计算即可【详解】(2)证明:连接

25、OC,AB为O直径,ACB90,CD为O切线OCD90,ACODCB90OCB,CACD,CADDCOBCBOOCBCOBBC;(2)连接AE,过点B作BFCE于点F,E是AB中点,AEBE2AB为O直径,AEB90ECBBAE45,CFBF2【点睛】本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键24、(1)证明见解析;(2)AD=2【解析】(1)如图,连接OA,根据同圆的半径相等可得:D=DAO,由同弧所对的圆周角相等及已知得:BAE=DAO,再由直径所对的圆周角是直角得:BAD=90,可得结论;(2)先证明OABC,由垂径定理得:,FB=BC,根

26、据勾股定理计算AF、OB、AD的长即可【详解】(1)如图,连接OA,交BC于F,则OA=OB,D=DAO,D=C,C=DAO,BAE=C,BAE=DAO,BD是O的直径,BAD=90,即DAO+BAO=90,BAE+BAO=90,即OAE=90,AEOA,AE与O相切于点A;(2)AEBC,AEOA,OABC,FB=BC,AB=AC,BC=2,AC=2,BF=,AB=2,在RtABF中,AF=1,在RtOFB中,OB2=BF2+(OBAF)2,OB=4, BD=8,在RtABD中,AD=【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁