种群的空间分布型及抽样47138.pptx

上传人:muj****520 文档编号:87664197 上传时间:2023-04-16 格式:PPTX 页数:96 大小:2.12MB
返回 下载 相关 举报
种群的空间分布型及抽样47138.pptx_第1页
第1页 / 共96页
种群的空间分布型及抽样47138.pptx_第2页
第2页 / 共96页
点击查看更多>>
资源描述

《种群的空间分布型及抽样47138.pptx》由会员分享,可在线阅读,更多相关《种群的空间分布型及抽样47138.pptx(96页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、种群的空间分布型及抽样李典谟 中科院动物研究所Email:2005年10月(一)空间分布 型1.意义 种群生态特性:空间是聚集 分布还是 随机分布,解决抽样方法,提供理论依据。2.分类 随机分布:泊松(Poisson)分布 聚集分布:负二项分布(negative binomial distribution)奈曼分布(Neyman)泊松二项分布 The simplest view of spatial patterning can be obtained by adopting an individual orientation,and asking the question,Given the

2、 location of one individual,what is the probability that another individual is nearby?There are three possibilities:1.This probability is increasedaggregated pattern 2.This probability is reduceduniform pattern 3.This probability is unaffectedrandom patternRandomAggregatedUniformFigure4.3 Three poss

3、ible types of spatial patterning of individual animals or plant in a population.3.频次分布理论公式 (1)泊松(普阿松)分布例:蝗蝻的田间分布02050101200112(1)普阿松分布(Poisson 分布)例:对公共汽车客流进行调查,统计某天上午10301147左右每隔20秒钟来到的乘客批数,共得到230个记录。来到批数i0123 4总共频数ni100813496230频率0.430.350.150.040.030.420.360.160.050.01普阿松分布的意义已经发现许多随机现象服从普阿松分布 (1)

4、社会生活,服务行业 如:电话交换台中来到的呼叫数 公共汽车站来到的 乘客数 (2)物理学 放射性分裂落到某区域的质点数 (3)昆虫个体的空间分布普阿松分布的特点以交换台电话呼叫数为例 (1)平衡性 在t0,t0+t中来到的呼叫数只与时间间隔长度t有关,而与时间起点T0无关 (2)独立增量性(无后效性)在t0,t0+t内来到k个呼叫这一事件与时刻T0前发生的事件独立 (3)普通性 在充分小的时间间隔中,最多只来到一个呼叫例:蝗蝻分布型调查,共取样例:蝗蝻分布型调查,共取样408408个个虫数 x频率 f f*x02250113013024080310304312408252计算方法计算方法另样的

5、理论数 n*p0=408*0.5391=219.09有一头虫的样本的理论数 n*p1=135.9 观察值与理论值比较虫数 x观察值(o)理论值(c)0225219.90.111130135.90.2624042.20.093108.70.21 431.32.222.89自由度自由度=n-2=3=n-2=3,失去两个自由度,失去两个自由度(1 1)用来限制实际样本数)用来限制实际样本数N N (2)(2)用来估计用来估计 意味不是一个小概率事件(p0.05),没有理由否定假设要求各组内的预计数都不少于5,当某组的Y少于5时,须把它和相邻的一组或几组合并直到Y大于5,然后再用上式计算 x2值。检验

6、的理论与方法检验的理论与方法1 公式 O为实际观测值,E为理论推算值。其基本原理是应用理论推算值与实际观测值之间的偏离程度来决定其 值的大小。是理论分布总体的频数 是观察分布总体的频数 两个样本来自不同的总体2分布的特点 df=1 df=3 df=5(1)分布于区间1,),偏斜度随自由度降低而增大,当自由度df=1时,曲线以纵轴为渐近线。(2)随自由度df增大,分布趋左右对称,当df30时,分布接近正态。3 检验的基本步骤(1)建立检验假设,确定检验水平。(2)计算检验统计量(3)确定概率P值,计算自由度dfk-1 由 和自由度查统计表 的临界值(4)判断结果 临界值检验假设的关系 值 P 假

7、设 判断 0.05 不拒绝 差异无显著性 0.05 拒绝 差异有显著性例:假定某地婴儿出生的男女比例为1:1。研究者抽取了一个含10,000名婴儿的样品,男孩5100,女孩4900,问他是否证实了假设或否定了假设。某地婴儿出生性比为1:1 拒绝 婴儿性比不为1:1注:在自由度df1时,需进行连续性矫正,其矫正的 为:适合性检验 比较观测数与理论数是否符合的假设检验叫适合性检验。例如在遗传学上,常用 检验来测定所得的结果是否符合孟德尔分离规律,自由组合定律等。例 有一鲤鱼遗传试验,以荷包红鲤(红色)与湘江野鲤(青灰色)杂交,其 代获得如表5-2所列得体色分离尾数,问这一资料的实际观察值是否符合孟

8、德尔的青:红=3:1一对等为基因的遗传规律?表表 鲤鱼遗传试验遗传试验 F2观察结果观察结果 体 色 青 灰 色 红 色 总数 F2观测尾数 1503 99 1602(1)鲤鱼体色 分离符合3:1比率。(2)取显著水平(3)计算 青灰色理论数 红色理论数(4)差 值表。df=1时,故否定 ,接受 即鲤鱼体色 分离不符合3:1比率。(2)负二项分布正二项分布是(p+q)n 的展开式的各项,其中n为个体总数,p,q为分成对比两类期望的比例。Student(1907).展开上述式子,于是一个样本单位有r个个体的概率为可以估算出p,k。矩法由此可以推出(二)分布型指数上述蝗蝻例子中说明上述蝗蝻属Poi

9、sson分布。2.David&Moore(1954)方法 Index of Dispersion Test.We define an index of dispersion I to be For the theoretical Poisson distribution,the variance equals the mean,so the expected value of I is always 1.0 in a Poisson world.The simplest test statistic for the index of dispersion is a chi-squared on

10、e:where I=Index of dispersion(as defined in equation 4.3)n=Number of quadrats counted =value of chi-squared with(n-1)degrees of freedom.0 41 82 23 54 25 36 1 虫数 频率25例:取了25个样,调查蚯蚓的田间分布。由于 observed chi-squared 所以,我们接受原假设:蚯蚓田间分布符合Poisson分布。3.Waters(1959)提出 负二项分布中的Kk的特性:当种群密度因为随机死亡而减小时,k保持不变,表示种群空间分布的内在

11、特点,而与密度无关4.Tayloz(1961,1965,1978)方法密度越高,种群分布越均匀,(聚集度越低)5.平均拥挤度指标Lloyd,M.(1967)例:a 1b 0c 2d 3X1=1;x2=0X3=2;x4=3n=4A:一头“独居”1*(1-1)B:没有邻居C:有两头,各以对方为邻居;2*(2-1)=2D:每个有两个邻居,3*(3-1)=6,总共“邻居”数为:0+0+2+6=8 平均每个个体有1.33个邻居Lloyd定义聚集度指标:Iwao 发现 The idealized index should have three properties.(Elliott 1977)1.It s

12、hould change in a smooth manner as moves from maximum uniformity to randomness to maximum aggregation.2.It should not be affected by sample size(n),population density(),or by variation in the size and shape of the sampling quadrat.3.It should be statistically tractable,so that a confidence belt can

13、be specified and comparixons between samples can be tested for significance.Morisitas Index of Dispersion (1)Morisitas index of dispersion 样本大小 sum of the quadnat counts=Morisita(1962)证明 随机分布的假设下:Standardized Morisita IndexUniform index=(2)Clumped index=(3)=Value of chi-squared from table with(n-1)d

14、egrees of freedom that has 97.5%of the area to the right.WhenWhenWhenWhen 取值以-1.0到+1.0带着95%置信区间随机分布聚集分布均匀分布In a simulation study Myers(1978)found the standardized Morisita index to be one of the best measures of dispersion because it was independent of population density and sample size.例:例:E.Sincla

15、ir 在26个10公顷的样点调查大象的数量,其中一个样点有20头,令一样点30头,还有一样点10头,其他23点为零。(1)计算 Morisitas index(2)以公式(2)(3)中计算临界点。当自由度=n-1=25,Uniform index Clumped index(3)计算 Standardized Morisita index:由于(4)因为 于是我们得到结论:在置信水平95%下,在我们取样区大象是聚集分布的。(三)(三)Sample and Experimental Design Sampling and experimental design are statistical j

16、argon for the three most obvious questions that can occur to a field ecologist:Where should I take my samples,how should I collect the data in space and time,and how many samples should I try to take?抽样理论及在生态学中的应用W.Gosset 1908年以“Student”笔名将“t-检验”发表于biometrika上,文章中说:“任何实验可以作为是许多可能在相同条件下作出的实验的总体中的一个个体

17、.一系列的实验则是以从这个总体中所抽得的一个样品”1.总体与抽样 设一块棉田有N株棉株,每株上某种害虫数分别为X1,X2.XN,从总体N中,随机抽取n株(nN)样本,每株虫数分别为X1,X2,Xn.目的:通过样本对总体做出推断 抽样误差估计及t分布1908年,“Student”发表了t分布例:棉田中随机调查50株棉株,以估计该棉田中害虫的数量.Sample Size for Continuous Variable理论抽样数模型例:洪泽湖蝗区虫数样本数(f)fx0170153532183631030428100127 如果,我们引入变异系数(coefficient of variation)这儿

18、,=标准差 =观察平均数 那么,绝对误差 可写成相对误差 ,(以百分比形式)(方程1)两个平均数的比较两个平均数的比较例如,我们要比较两个池塘中同一种鱼的重量是否有差异,典型的方法是个抽取一定数量的样本用t检验来检验两样本平均数是否有差异。但是,如何在抽样前回答应该取多少样?Snedecor and Cochran(1967,113)提出了如下的近似公式:一般 这儿 =从两个种群中的每一个抽取的样本大小;=水平为 的标准正态离差值 ()=水平为 的型错误概率下的标准正态离差值(见下表)=测量的方差。(已知,或推测)。=你希望以 概率能检测出的两平均值的最小差异。Type error Power

19、 Two-tailed 0.40 0.60 0.25 0.20 0.80 0.84 0.10 0.90 1.28 0.05 0.95 1.64 0.01 0.99 2.33 0.001 0.999 2.58决策决策 Power越大,决策结果越可靠 不拒绝H0 拒绝H0 H0是真 决策正确(概率1)I型错误(概率)H0是假 II型错误(P)决策正确(P1)power 例.如果上例中我们希望检测出的平均数差异是:(从以前的研究中知道)如果,则 条。2.SAMPLE SIZE FOR DISCRETE VARIABLES Counts of the numbers of plants in a qu

20、adrat or the numbers of eggs in a nest differ from continuous variables in their statistical properties.The frequency distribution of counts will often be described by either the binomial distribution,the Poisson distribution or the negative binomial distribution(Elliott 1977).The sampling propertie

21、s of these distributions differ,so we require a different approach to estimating sample sizes needed for counts.(1)Proportions and Percentages Proportions like the sex ratio or fraction of juveniles in a population are described statistically by the binomial distribution.All the organisms are classi

22、fied into two classes,and the distribution has only two parameters:Proportion of types in the population Proportion of types in the populationIf sample size is above 20,we can use the normal approximation to the confidence interval:Where Observed proportion Value of Students t-distribution for n-1 d

23、egrees of freedom Standard error of Thus the desired margin of error is Solving for n,the sample size required is where n=Sample size needed for estimating the proportion p d=Desired margin of error in our estimate As a first approximation for we can use We need to have an approximate value of p to

24、use in this equation.Prior information,or a guess,should be used;the only rule-of-thumb is that when in doubt,pick a value of p closer to 0.5 than you guess.This will make your answer conservative.As an example,suppose you wish to estimate the sex ratio of a deer population.You expect p to be about

25、0.40,and you would like to estimate p within an error limit of with .From equation(2)Counts from a Poisson DistributionSample size estimation is very simple for any variable that can be described by the Poisson distribution,in which the variance equals the mean.From this it follows thatorThus from e

26、quation,(1)assuming :where Sample size required for a Poisson variable Desired relative error(as percentage)Coefficient of variation=For example,if you are counting eggs in starling nests and know that these counts fit a Poisson distribution and that the mean is about 6.0,then if you wish to estimat

27、e this mean with precision of (width of confidence interval),you have:nestsEquation(2)can be simplified for the normal range of relative errors as follows:For precision 3.STATISTICAL POWER ANALYSIS DecisionState of real world Do not reject null hypothesis Reject the null hypothesisNull hypothesis is

28、 Correct decision Type error actually true (probability=1-)(probability=)Null hypothesis is Type error Correct decision actually false (probability=)(probability=(1-)=power)Most ecologists worry about ,the probability of a Type error,but there is abundant evidence now that we should worry just as mu

29、ch or more about ,the probability of a Type error(Peterman 1990;Fairweather 1991).Power analysis can carried out before you begin your study(a priori,or prospective power analysis)or after you have finished(retrospective power analysis).Here we discuss a priori power analysis as it is used for the p

30、lanning of experiments.Thomas(1997)discussed retrospective power analysis.The key point you should remember is that there are four variables affecting any statistical inference:sample sizeProbability of a Probability of a Type error Type error Magnitude of the effect=effect sizeThese four variables

31、are interconnected,and once any three of them are fixed,the fourth is automatically determined.Looked at from another perspective,given any three of these,you can determine the fourth.Figure 7.3 An example of how power calculations can be visualized.In this simple example,a t-test to be carried out

32、to determine if the plant nitrogen level has changed from the base level of 3.0%(the null hypothese)to the improved level of 3.3%(the alternative hypothese).Given n=100,sSUMMARYThe most common question in ecological research is,how large a sample should I take?This chapter attempts to give a general

33、 answer to this question by providing a series of equations from which sample size may be calculated.It is always necessary to know something about the population you wish to analyze unless you use guesswork or prior observations.You must also make some explicit decision about how much error you wil

34、l allow in your estimates(or how small a confidence interval you wish to have).For continuous variables like weight or length,we can assume a normal distribution and calculate the required sample sizes for means and for variances quite precisely.For counts,we need to know the underlying statistical

35、distributionbinomial,Poisson,or negative binomialbefore we can specify sample sizes needed.Power analysis explores the relationships between the four interconnected variables (probability of Type error),(probability of Type error),effect size,and sample size.Fixing three of these automatically fixes

36、 the fourth,and ecologists should explore these relationships before they begin their experiments.Significant effect sizes should be specified on ecological grounds before a study is begun.Sampling Designs:Random,Adaptive and Systematic Sampling(1)Simple Random Sampling(2)Stratilied Random Sampling(

37、3)Adaptive Sampling(4)Systematic Sampling Simple random sampling is the easiest and most common sampling design.Each possible sample unit must have an equal chance of being selected to obtain a random sample.All the formulas of statistics are based on random sampling,and probability theory is the fo

38、undation of statistics.Thus you should always sample randomly when you have a choice.In some cases the statistical population is finite in size,and the idea of a finite population correction must be added into formulas for variances and standard errors.These formulas are reviewed for measurements,ra

39、tios,and proportion.Often a statistical population can be subdivided into homogeneous subpopulations,and random sampling can be applied to each subpopulation separately.This is stratified random sampling,and represents the single most powerful sampling design that ecologists can adopt in the field w

40、ith relative ease.Stratified sampling is almost always more precise than simple random sampling,and every ecologist should use it whenever possible.Sample size allocation in stratified sampling can be determined using proportional or optimal allocation.To use optimal allocation,you need rough estima

41、tes of the variances in each of the strata and the cost of sampling each strata.Optimal allocation is more precise than proportional allocation,and is to be preferred.Some simple rules are presented to allow you to estimate the optimal number of strata you should define in setting up a program of st

42、ratified random sampling.If organisms are rare and patchily distributed,you should consider using adaptive cluster sampling to estimate abundance.When a randomly placed quadrat contains a rare species,adaptive sampling adds quadrats in the vicinity of the original quadrat to sample the potential clu

43、ster.This additional nonrandom sampling requires special formulas to estimate abundance without bias.Systematic sampling is easier to apply in the field than random sampling,but may produce biased estimates of means and confidence limits if there are periodicities in the data.In field ecology this i

44、s usually not the case,and systematic samples seem to be the equivalent of random samples in many field situations.If a gradient exists in the ecological community,systematic sampling will be better than random sampling for describing it.Systematic SamplingWhat is the likelihood that problems like p

45、eriodic variation will occur in actual field data?Milne(1959)attempted to answer this question by looking at systematic samples taken on biological populations that had been completely enumerated.He analyzed data from 50 populations and found that,in practice,there was no error introduced by that a

46、centric systematic sample is a simple random sample,and using all the appropriate formulas from random sampling theory.Step 1.Calculate the average abundance of each of the networks:(8.35)where =Average abundance of the i-th network =Abundance of the organism in each of the k quadrats in the i-th ne

47、twork =Number of quadrats in the i-th netwrok Step 2.From these values we obtain an estimator of the mean abundance as follows:(8.36)where Unbiased estimate of mean abundance from adaptive cluster sampling Number of initial sampling units selected via random samplingIf the initial sample is selected

48、 with replacement,the variance of this mean is given by:(8.37)where Estimated variance of mean abundance for sampling with replacement and all other terms are as defined above.If the initial sample is selected without replacement,the variance of the mean is given by:(8.38)where N=Total number of pos

49、sible sample quadrats in the sampling universeThe example shown in Figure 8.3.in the initial random sample of n=10 quadrats,from equation(8.36).plants per quadratSince we were sampling without replacement,we use equation(8.38)to estimate the variance of this mean:We can obtain confidence limits from

50、 these estimates in the usual way:For this example with n=10,for 95%confidence limits ,and the confidence limits become:or from 0.0 to 0.171 plants per quadrat.When should one consider using adaptive sampling?Much depends on the abundance and the spatial pattern of the animals or the plants being st

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 一级建造

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁