线面平行的判定与性质幻灯片.ppt

上传人:石*** 文档编号:87615898 上传时间:2023-04-16 格式:PPT 页数:72 大小:7.51MB
返回 下载 相关 举报
线面平行的判定与性质幻灯片.ppt_第1页
第1页 / 共72页
线面平行的判定与性质幻灯片.ppt_第2页
第2页 / 共72页
点击查看更多>>
资源描述

《线面平行的判定与性质幻灯片.ppt》由会员分享,可在线阅读,更多相关《线面平行的判定与性质幻灯片.ppt(72页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、线面平行的判定与性质第1页,共72页,编辑于2022年,星期二直线直线a在平面在平面 内内直线直线a与平面与平面 相交相交直线直线a与平面与平面 平行平行aaAa记为记为a 记为记为a=A记为记为a/有无数个交点有无数个交点有且只有一个交点有且只有一个交点没有交点没有交点复习:复习:空间直线与平面的位置关系有哪几种空间直线与平面的位置关系有哪几种?第2页,共72页,编辑于2022年,星期二感受现实生活中线面平行的实际例子感受现实生活中线面平行的实际例子直观感知直观感知水平面水平面第3页,共72页,编辑于2022年,星期二天花板平面天花板平面直观感知直观感知感受现实生活中线面平行的实际例子感受现

2、实生活中线面平行的实际例子第4页,共72页,编辑于2022年,星期二球场地面球场地面直观感知直观感知感受现实生活中线面平行的实际例子感受现实生活中线面平行的实际例子第5页,共72页,编辑于2022年,星期二实例实例1 1:生活中,我们注意到门扇的两边是:生活中,我们注意到门扇的两边是平行的平行的.当门扇绕着一边当门扇绕着一边转动时,观察门扇转动转动时,观察门扇转动的一边的一边l 与门框所在平面与门框所在平面的位置关系如何?的位置关系如何?实例实例2 2:若将一本书平放若将一本书平放在桌面上,翻动书的封面,在桌面上,翻动书的封面,观察封面边缘所在直线观察封面边缘所在直线l与桌面所在的平面具有怎样

3、与桌面所在的平面具有怎样的位置关系?的位置关系?猜想:如果平面外一条直猜想:如果平面外一条直线和这个平面内的一条直线和这个平面内的一条直线平行,那么这条直线和线平行,那么这条直线和这个平面平行这个平面平行.lll观察与猜想观察与猜想这两个实例中你这两个实例中你们可以得出什么们可以得出什么结论?结论?第6页,共72页,编辑于2022年,星期二 在生活中,注意到门扇的两边是平在生活中,注意到门扇的两边是平行的当门扇绕着一边转动时,另一行的当门扇绕着一边转动时,另一边始终与门框所在的平面没有公共点,边始终与门框所在的平面没有公共点,此时门扇转动的一边与门框所在的平此时门扇转动的一边与门框所在的平面给

4、人以平行的印象面给人以平行的印象第7页,共72页,编辑于2022年,星期二 怎样判定直线怎样判定直线与平面平行呢?与平面平行呢?根据定义,判定直线与平面是否平根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点行,只需判定直线与平面有没有公共点但是,直线无限延长,平面无限延展,但是,直线无限延长,平面无限延展,如何保证直线与平面没有公共点呢?如何保证直线与平面没有公共点呢?a思思 考考第8页,共72页,编辑于2022年,星期二 将一本书平放在桌面上,翻动书的硬将一本书平放在桌面上,翻动书的硬皮封面,封面边缘皮封面,封面边缘AB所在直线与桌面所所在直线与桌面所在平面具有什么样的位置关

5、系?在平面具有什么样的位置关系?第9页,共72页,编辑于2022年,星期二平面平面外有直线外有直线平行于平面平行于平面内的直线内的直线(1)这两条直线共面吗?)这两条直线共面吗?(2)直线)直线与平面与平面相交吗?相交吗?共面共面不可能相交不可能相交b第10页,共72页,编辑于2022年,星期二 平面外一条直线与此平面内的一条直线平行,则该平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行直线与此平面平行 证明直线与平面平行,三个条件必须具备,才能得到证明直线与平面平行,三个条件必须具备,才能得到线面平行的结论线面平行的结论直线与平面平行关系直线与平面平行关系直线间平行关系直线间平行

6、关系空间问题空间问题平面问题平面问题第11页,共72页,编辑于2022年,星期二 (1 1)定义法:证明直线与平面无公共点;)定义法:证明直线与平面无公共点;(2 2)判定定理:)判定定理:证明平面外直线与平面内直线平行证明平面外直线与平面内直线平行 怎样判定直线与平面平行?怎样判定直线与平面平行?第12页,共72页,编辑于2022年,星期二思考:思考:第13页,共72页,编辑于2022年,星期二 例例1 1 求证:空间四边形相邻两边中点的连线平行于经求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面过另外两边所在的平面 已知:空间四边形已知:空间四边形ABCD中,中,E,F分别分

7、别AB,AD的中点的中点求证:求证:EF/平面平面BCD证明:连接证明:连接BD.因为因为 AE=EB,AF=FD,所以所以 EF/BD(三角形中位线的性质)(三角形中位线的性质)因为因为由直线与平面平行的判断定理得由直线与平面平行的判断定理得:EF/平面平面BCD.第14页,共72页,编辑于2022年,星期二已知空间四边形已知空间四边形ABCD中中,P、Q分别是三角形分别是三角形ABC和三角形和三角形ACD的重心的重心.求证:求证:PQ/平面平面BCD.BCDAPQEF变式训练变式训练第15页,共72页,编辑于2022年,星期二如图,在三棱锥如图,在三棱锥A-BCD中中,E、F、N、M分别为

8、各棱的中点,分别为各棱的中点,【快速应答】【快速应答】四边形四边形ENMF是什么四边形?是什么四边形?若若,四边形是什么四边形?,四边形是什么四边形?若若,四边形是什么四边形?,四边形是什么四边形?【快速思考】【快速思考】直直线线ACAC与平面与平面EFMN的位置关系是什么?为什么?的位置关系是什么?为什么?在这图中,你能找出哪些线面平行关系?在这图中,你能找出哪些线面平行关系?NMFDCBAE变式练习变式练习第16页,共72页,编辑于2022年,星期二如图,三棱柱如图,三棱柱ABCA1B1C1中,中,M、N分别是分别是BC和和A1B1的中点,求证的中点,求证:MN平面平面AA1C1C证明:设

9、证明:设A1C1中点为中点为F,连结连结NF,FCN为为A1B1中点,中点,M是是BC的中点,的中点,NFCM为平行四边形为平行四边形,故故MNCFMC1ACB1BNA1巩固练习巩固练习1:B1C1NF又又BCB1C1,MC1/2B1C1即即MCNF而而CF平面平面AA1C1C,MN平面平面AA1C1C,MN平面平面AA1C1C,大图大图大图大图第17页,共72页,编辑于2022年,星期二ABCDA1D1C1B1(1)与直线与直线AB平行的平面有:平行的平面有:在长方体在长方体ABCD-A1B1C1D1各面中,各面中,(2)与直线与直线AA1平行的平面有:平行的平面有:平面平面CD1,CD面面

10、CD1,平面平面A1C1AB平面平面CD1ABCD,AB 面面CD1,A1B1面面A1C1,ABA1B1,AB平面平面A1C1巩固练习巩固练习2:AB 面面A1C1,平面平面CD1平面平面BC1第18页,共72页,编辑于2022年,星期二 1.1.判断下列说法是否正确:判断下列说法是否正确:一条直线和一个平面平行,它就和这一条直线和一个平面平行,它就和这 个平面内的无数条直线平行;个平面内的无数条直线平行;一条直线和一个平面平行,它就和这一条直线和一个平面平行,它就和这 个平面内的任何条直线无公共点;个平面内的任何条直线无公共点;过直线外一点,有且仅有一个平面和过直线外一点,有且仅有一个平面和

11、 已知直线平行;已知直线平行;如果直线如果直线m m和平面和平面平行,那么过平平行,那么过平 面面内一点和直线内一点和直线m m平行的直线在平行的直线在内。内。定义练习定义练习 第19页,共72页,编辑于2022年,星期二定义练习定义练习课本页第二题课本页第二题平行平行第20页,共72页,编辑于2022年,星期二5.以下命题(其中以下命题(其中a,b表示直线,表示直线,表示平面)表示平面)若若ab,b,则,则a 若a,b,则ab若ab,b,则a若若a,b,则,则ab其中正确命题的个数是其中正确命题的个数是()A0个个B1个个C2个个D3个个定义定义练习练习第21页,共72页,编辑于2022年,

12、星期二6.6.判断下列命题是否正确,若正确,请简述理判断下列命题是否正确,若正确,请简述理由,若不正确,请给出反例由,若不正确,请给出反例.(1)如果如果a、b是两条直线,且是两条直线,且ab,那么那么a 平行平行于经过于经过b的任何平面;的任何平面;()(2)如果直线)如果直线a、b和平面和平面 满足满足a ,b ,那么那么a b;()(3)如果直线如果直线a、b和平面和平面 满足满足a b,a,b ,那么那么 b ;()(4)过平面外一点和这个平面平行的直线只有过平面外一点和这个平面平行的直线只有一条一条.()定义练习定义练习第22页,共72页,编辑于2022年,星期二 如图,长方体如图,

13、长方体 中,中,(1)与)与AB平行的平面是平行的平面是 ;(2)与)与 平行的平面是平行的平面是 ;(3)与)与AD平行的平面是平行的平面是 ;平面平面平面平面平面平面平面平面平面平面平面平面第23页,共72页,编辑于2022年,星期二如图如图,四棱锥四棱锥ADBCE中中,O为底面正方形为底面正方形DBCE对角对角线的交点线的交点,F为为AE的中点的中点.求证求证:AB/平面平面DCF。(04年天年天津高考津高考)DABCFOE真题演练真题演练1第24页,共72页,编辑于2022年,星期二如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA平面MDB.SMCABDE

14、真题演练真题演练2第25页,共72页,编辑于2022年,星期二已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心,求证:MN平面PB1C.ABCDA1B1C1D1MNP真题演练真题演练3第26页,共72页,编辑于2022年,星期二如图在正方形ABCDA1 B1C1D1中,E、F分别是棱BC、C1D1的中点,求证:EF平面BDD1B1.B1ABCDA1C1D1F真题演练真题演练4OE第27页,共72页,编辑于2022年,星期二思路解析:思路解析:本题要点在于构造平面BDD1B1内与EF平行的直线BO.答案:答案:取D1B1的中点O,连结OF、OB

15、.OF,BEB1C1,OFBE.四边形OFEB为平行四边形.EFBO.EF平面BDD1B1,BO平面BDD1B1,EF平面BDD1B1.深化升华深化升华证明线面平行可先证线线平行,但要注意“三条件”的说明,关键是找到面内的线.第28页,共72页,编辑于2022年,星期二如图在斜三棱柱ABCA1B1C1A1AB=A1AC,AB=AC,A1A=A1B=a,侧面B1BCC1与底面ABC所成的二面角为120,E、F分别是棱B1C1、A1A的中点.证明A1E平面B1FC.真题演练选做真题演练选做5第29页,共72页,编辑于2022年,星期二思路解析:思路解析:本题关键在于在平面内作出与直线AE平行的直线

16、PF.思路解析:思路解析:本题关键在于在平面内作出与直线A1E平行的直线PF.证明:取BC中点为G,连结EG.设EG与BC的交点为P,点P为EG的中点.连结PF,在平行四边形AGEA中,因F为AA的中点,故AEFP.而FP平面BFC,AE平面BFC,所以AE平面BFC.深化升华深化升华证明平面外的一条直线和该平面平行,只要在平面内找到一条直线和已知直线平行即可,证明线面平行关键是证明线线平行.第30页,共72页,编辑于2022年,星期二如图,在三棱柱如图,在三棱柱ABCA1B1C1中,中,D是是AC的中点。的中点。求证:求证:AB1/平面平面DBC1P真题演练真题演练6第31页,共72页,编辑

17、于2022年,星期二如如图图,在五面体,在五面体中中,点点是矩形是矩形的的对对角角线线的交点,面的交点,面是等是等边边三角形,棱三角形,棱证证明明/平面平面真题演练真题演练7H第32页,共72页,编辑于2022年,星期二已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点证明:DN/平面PMB;真题演练真题演练8E第33页,共72页,编辑于2022年,星期二已知正方体已知正方体,是底面是底面对对角角线线的交点的交点.求求证证:面面E真题演练真题演练9第34页,共72页,编辑于2022年,星期二 P P是长方形是长方形ABCDABCD所在平面外

18、的一点,所在平面外的一点,ABAB、PDPD两点两点MM、N N满足满足AMAM:MB=NDMB=ND:NPNP。求证:求证:MNMN平面平面PBCPBC。P PN NMMD DC CB BA AE E真题演练真题演练10第35页,共72页,编辑于2022年,星期二 如如图图:是平行四是平行四边边形形平面外一点,平面外一点,分分别别是是上的点,且上的点,且=求求证证:平面平面第36页,共72页,编辑于2022年,星期二反思反思1 1:要证明直线与平面平行可以运用判定定理;:要证明直线与平面平行可以运用判定定理;线线平行线线平行 线面平行线面平行反思反思2 2:能够运用定理的条件是要满足六个字:

19、能够运用定理的条件是要满足六个字:反思反思3 3:运用定理的关键是:运用定理的关键是找平行线找平行线;找平行线又经常;找平行线又经常 会用到会用到三角形中位线定理三角形中位线定理.“面外、面内、平行面外、面内、平行”思考思考第37页,共72页,编辑于2022年,星期二ABCDEF如如图图,已知,已知平面平面,平面平面为为等等边边三角形,三角形,为为的中点的中点.求求证证:平面平面第38页,共72页,编辑于2022年,星期二如图四棱锥SABCD中,SDAD,SDCD,E是SC的中点,O是底面正方形ABCD的中心,ABSD6.(1)求证:EO平面SAD;(2)求异面直线EO与BC所成的角.ABCD

20、OES第39页,共72页,编辑于2022年,星期二1 1证明直线与平面平行的方法:证明直线与平面平行的方法:(1 1)利用定义;)利用定义;(2 2)利用判定定理)利用判定定理3 3数学思想方法:转化的思想数学思想方法:转化的思想空间问题空间问题平面问题平面问题线线平行线线平行线面平行线面平行直线与平面没有公共点直线与平面没有公共点2 2 2 2、证明平面与平面平行的方法:、证明平面与平面平行的方法:、证明平面与平面平行的方法:、证明平面与平面平行的方法:定义定义 判定定理(线面平行证面面平行)判定定理(线面平行证面面平行)4 4.用定理证明线面平行时用定理证明线面平行时,寻找平行直线可以通寻

21、找平行直线可以通过过三角形的中位线、梯形的中位线、平行线的判三角形的中位线、梯形的中位线、平行线的判定、平行公理定、平行公理等来完成等来完成.小结小结第40页,共72页,编辑于2022年,星期二明年是我们的收获年坚持就是胜利第41页,共72页,编辑于2022年,星期二2.2.2直线与平面平行的性质直线与平面平行的性质杭锦旗中学杭锦旗中学明星明星第42页,共72页,编辑于2022年,星期二一、复习回顾:一、复习回顾:1 1、直线和平面有哪几种位置关系?、直线和平面有哪几种位置关系?平行、相交、在平面内平行、相交、在平面内2 2、反映直线和平面三种位置关系的、反映直线和平面三种位置关系的依据是什么

22、?依据是什么?公共点的个数公共点的个数没有公共点:没有公共点:平行平行仅有一个公共点:相交仅有一个公共点:相交无数个公共点:在平面内无数个公共点:在平面内第43页,共72页,编辑于2022年,星期二如果平面外的一条直线和平面内的如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平一条直线平行,那么这条直线和这个平面平行面平行.3 3、直线和平面平行的判定定理、直线和平面平行的判定定理第44页,共72页,编辑于2022年,星期二 线面平行的判定定理线面平行的判定定理解决了线面解决了线面平行的条件平行的条件;反之,在直线与平面平;反之,在直线与平面平行的条件下,行的条件下,会得到什么结

23、论会得到什么结论?二、问题引领:二、问题引领:第45页,共72页,编辑于2022年,星期二三、合作交流三、合作交流1 1、若直线、若直线 平面平面,则直线,则直线 与与平面平面的直线的位置关系有哪几种可的直线的位置关系有哪几种可能?能?第46页,共72页,编辑于2022年,星期二2 2、若直线、若直线 平面平面,则在平面,则在平面内与内与 平行的直线有多少条?这些平行的直线有多少条?这些与与 平行的直线的位置关系如何?平行的直线的位置关系如何?第47页,共72页,编辑于2022年,星期二3 3、若直线、若直线 平面平面 ,过直线,过直线 作平面作平面使它与平面使它与平面相交,设相交,设 =m=

24、m,则,则 与与m m的位置关系如何?的位置关系如何?为什么?为什么?m4 4、试用文字语言将上述原理表述、试用文字语言将上述原理表述成一个命题成一个命题.第48页,共72页,编辑于2022年,星期二线面平行的性质定理线面平行的性质定理 ml线面平行线面平行 线线平行线线平行 一条直线与一个平面平行,则过这条直线的任一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。一平面与此平面的交线与该直线平行。第49页,共72页,编辑于2022年,星期二第50页,共72页,编辑于2022年,星期二5 5、上述命题反映了直线和平面平、上述命题反映了直线和平面平行的一个性质,其内容可简

25、述为行的一个性质,其内容可简述为“线面平行则线线平行线面平行则线线平行”.线线面面线线线线第51页,共72页,编辑于2022年,星期二四、巩固练习四、巩固练习一、判断下列命题是否正确?一、判断下列命题是否正确?(1)若直线)若直线平行于平面平行于平面内的无内的无数条直线,则数条直线,则()第52页,共72页,编辑于2022年,星期二(2 2)设)设a a、b b为直线,为直线,为平面,若为平面,若abab,且,且b b在在内,则内,则aa.a ab b()第53页,共72页,编辑于2022年,星期二(3)(3)若直线若直线 平面平面,则,则 与平面与平面内的任意直线都不相交的任意直线都不相交.

26、(4 4)设)设a a、b b为异面直线,过直线为异面直线,过直线a a且且与直线与直线b b平行的平面有且只有一个平行的平面有且只有一个.ab()()第54页,共72页,编辑于2022年,星期二1.如果一条直线和一个平面平行,则这条直线(如果一条直线和一个平面平行,则这条直线()A 只和这个平面内一条直线平行;只和这个平面内一条直线平行;B 只和这个平面内两条相交直线不相交;只和这个平面内两条相交直线不相交;C 和这个平面内的任意直线都平行;和这个平面内的任意直线都平行;D 和这个平面内的任意直线都不相交。和这个平面内的任意直线都不相交。D二、选择题:二、选择题:第55页,共72页,编辑于2

27、022年,星期二2.直线直线a 平面平面,平面,平面内有内有n n条互相平行的直线,条互相平行的直线,那么这那么这n n条直线和直线条直线和直线a()()(A)(A)全平行;全平行;(B B)全异面;)全异面;(C C)全平行或全异面;)全平行或全异面;(D D)不全平行或不全异面。)不全平行或不全异面。3.3.直线直线a 平面平面,平面,平面内有内有n n条交于一点的直线,条交于一点的直线,那么这那么这n n条直线和直线条直线和直线a 平行的平行的()()(A A)至少有一条;)至少有一条;(B B)至多有一条;)至多有一条;(C C)有且只有一条;()有且只有一条;(D D)不可能有。)不

28、可能有。CB第56页,共72页,编辑于2022年,星期二4.如果a、b是异面直线,且a平面,那么b与的位置关系是()A.bB.b与相交C.b 在内 D.不确定答案:D5.如果一条直线和一个平面平行,夹在直线和平面间的两线段相等,那么这两条线段所在直线的位置关系是()A.平行B.相交C.异面D.不确定答案:D第57页,共72页,编辑于2022年,星期二6.下面给出四个命题,其中正确命题的个数是()若a,b,则ab若a,b,则ab若ab,b,则a若ab,b,则aA.0B.1C.2D.4答案:A第58页,共72页,编辑于2022年,星期二7.下列说法正确的是()A.若直线a平行于面内的无数条直线,则

29、aB.若直线a在平面外,则aC.若直线ab,直线b ,则aD.若直线ab,直线b ,则直线a平行于平面内的无数条直线答案:D第59页,共72页,编辑于2022年,星期二8.下列命题中,正确的是()A.如果直线l与平面内无数条直线成异面直线,则lB.如果直线l与平面内无数条直线平行,则lC.如果直线l与平面内无数条直线成异面直线,则lD.如果一条直线与一个平面平行,则该直线平行于这个平面内的所有直线E.如果一条直线上有无数个点不在平面内,则这条直线与这个平面平行答案:C第60页,共72页,编辑于2022年,星期二9.如果直线m平面,直线n ,则直线m、n的位置关系是_.答案:平行或异面10.已知

30、:E为正方体ABCDA1B1C1D1的棱DD1的中点,则BD1与过A、C、E的平面的位置关系是_.答案:平行11.在正方体ABCDA1B1C1D1中,和平面A1DB平行的侧面对角线有_.答案:D1C、B1C、D1B1第61页,共72页,编辑于2022年,星期二已知:设平面已知:设平面、两两相交,且两两相交,且 ,若,若a abb,求证:,求证:bc.bc.b ba ac c经经典典例例题题例例1第62页,共72页,编辑于2022年,星期二证明证明:(自己总结):(自己总结)第63页,共72页,编辑于2022年,星期二例题例题2已知平面外的两条平行直线中的一条平已知平面外的两条平行直线中的一条平

31、行于这个平面,求证:另一条也平行于这个平行于这个平面,求证:另一条也平行于这个平面。面。cab注意这种纯文注意这种纯文字的证明题需字的证明题需要自己设计已要自己设计已知和结论见课知和结论见课本本59页例页例4第64页,共72页,编辑于2022年,星期二性质的应用性质的应用例题例题3有一块木料,棱有一块木料,棱BC平行于面平行于面A1C1要经过面要经过面A1C1内一点内一点P和棱和棱BC锯开木料,应该怎样画线?锯开木料,应该怎样画线?这这线与平面线与平面AC有怎样的关系?有怎样的关系?PA1DABB1D1C1CEF第65页,共72页,编辑于2022年,星期二如图,已知如图,已知AB/AB/平面平

32、面,AC/BD,AC/BD,且且ACAC、BDBD与与分别相交于点分别相交于点C C、D D,求证:求证:AC=BD.AC=BD.A AB BC CD D随堂练习随堂练习1 1第66页,共72页,编辑于2022年,星期二 在四面体在四面体ABCDABCD中,中,E E、F F分别是分别是ABAB、ACAC的中点,过直线的中点,过直线EFEF作平面作平面,分别交分别交BDBD、CDCD于于M M、N N,求证:,求证:EFEFMN.MN.CFEDBANM随堂练习随堂练习2 2第67页,共72页,编辑于2022年,星期二l 如如果果两两个个相相交交平平面面分分别别经经过过两两条条平平行行直直线线中

33、中的的一一条条,那那么它们的交线和这两条直线平行。么它们的交线和这两条直线平行。ab随堂练习随堂练习3:第68页,共72页,编辑于2022年,星期二在四棱锥P-ABCD中,底面ABCD是平行四边形,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:APGH.参考答案与解析:随堂练习随堂练习4:第69页,共72页,编辑于2022年,星期二证明:如图所示,连结证明:如图所示,连结AC,BD交于交于O,连结连结MO.四边形四边形ABCD是平行四边形,是平行四边形,O是是AC的中点的中点.又又M是是PC的中点,的中点,OMAP.又又平面平面BDM,平面平面BDM,AP平面平面BDM.又又AP 平面平面APGH,平面平面APGH平面平面BDM=GH,APGH.第70页,共72页,编辑于2022年,星期二过正方体过正方体AC1的棱的棱BB1作一平面交作一平面交平面平面CDD1C1于于EE1.求证求证:BB1EE1.随堂练习随堂练习5:第71页,共72页,编辑于2022年,星期二证明:如图.CC1BB1,平面BEE1B1,平面BEE1B1,CC1平面BEE1B1(直线和平面平行的判定定理).又平面CEE1C1过CC1且交平面BEE1B1于EE1,CC1EE1(直线和平面平行的性质定理).BB1EE1(公理4).第72页,共72页,编辑于2022年,星期二

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁