《第九章--湍流流动与换热ppt课件.ppt》由会员分享,可在线阅读,更多相关《第九章--湍流流动与换热ppt课件.ppt(52页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第九章第九章 湍流流动与换热湍流流动与换热 4前面两章讨论的是外掠物体和管内流动的层流对流换热,然而不可能在所有Re数下都能得到层流。4由流体力学可知,当Re数超过一定数值后,流体中会出现脉动,层流可发展成为或诱导出更加复杂的流动湍流。4湍流传热问题包括湍流的流动行为、工程传热中的主要应用以及湍流如何进行热量与动量传递。4本章将扼要介绍湍流的基本概念、湍流传热的基本处理方法和一些经验关系式。9-1 湍流的基本概念湍流的基本概念 49-1-1 层流到湍流的过渡层流到湍流的过渡41883年,雷诺通过对管内流动状态的观察和研究,首先发现了流态分为本质上的不同的层流和湍流。由层流过渡到湍流的原因十分复
2、杂,一般可以理解为是微小的扰动在一定条件下被放大,使层流失去稳定性,成为湍流。引起扰动的因素主要有来流的不均匀性、流体中杂质引起的物性的突变、来流温度的不均匀。影响层流过渡到湍流的因素还包括自由流的压力梯度、表面粗糙度、传热量等以及湍流强度。层流过渡到湍流是在一个区域内逐渐完成的,该区域称为过渡区。过渡开始时的雷诺数称为临界雷诺数Recr,不同的流动方式有不同的临界雷诺数:一般管内流动取Recr=2300104,外掠物体时取Recr6104 5106。如果湍流强度很低,表面很光滑,则临界雷诺数可以提高几个数量级。一些研究者用激光对直管进行研究,发现临界雷诺数可达几十万。4层流向湍流的过渡有几个
3、特征:边界层厚度迅速增加(如图9-1所示);速度分布由层流时的布劳修斯分布变得较平坦,最终趋于1/7次方指数分布;边界层的位移厚度与动量厚度之比急剧下降。4粘性流体稳定性理论认为,层流向湍流的过渡是发生在局部地点的现象,因而不少研究者采用边界层动量厚度作为临界雷诺数的定型尺寸。9-1 湍流的基本概念湍流的基本概念 9-1 湍流的基本概念湍流的基本概念 49-1-2 湍流结构及时均描述方法湍流结构及时均描述方法4 湍流对流换热是近年来的主要研究课题之一,许多研究者对湍流传热问题给出了系统的总结。纵观湍流传热的研究历史,一个世纪以来,始终遵循雷诺、布斯涅斯克和普朗特提出的理论。4 由层流到湍流的过
4、渡是一个十分复杂的过程,对这个区域的研究仍是当代学者的主要任务之一,目前尚无较准确的描述,因而以后篇幅所涉及的均是旺盛湍流。4 湍流是一种随机、非定常的、三维有旋流动,由各种尺寸的涡组成。涡是三维的,其大小、强度及其产生的地点、周期均不规则。Bejan认为湍流具有大尺度上的相同结构。一般解决湍流传热问题的基本方式与过去讨论的层流问题一样、是基于时间平均法则的描述。实验研究表明湍流中涡团的尺度远大于分子平均自由行程,连续介质假设仍然成立。4根据雷诺提出的时均化法则,描述湍流流动与换热的物理量的瞬时值时可以用时均值 与脉动值 之和表示。如图9-2所示。即4 (9-1-1)4其中时均值定义为4 (9
5、-1-2)4时均值随时间变化的湍流称非稳态湍流,不随时间变化的湍流称为稳态湍流。9-1 湍流的基本概念湍流的基本概念 9-1 湍流的基本概念湍流的基本概念 4时均法则的基本出发点是一段时间内脉动量的时均值为零,即4 (9-1-3)4即 4 (9-1-4)4类似地可以得到一系列时均法规则。流体的湍流强度通常用下式表示:4 (9-1-5)4 若 ,则称为各向同性湍流。9-1 湍流的基本概念湍流的基本概念 4对于常物性的不可压缩流体,其连续性方程为4 4湍流流动中,u、v、w均为瞬时值,按雷诺时均法则,它们可以表示为时均值与脉动值之和,即4将以上各式代入连续性方程,并作时均运算得4 9-2 湍流微分
6、方程湍流微分方程 4展开为4根据时均法则,脉动项的时均值为零,得4 (9-2-1)4上式与层流具有同样的形式,只是速度采用时均值。4x方向的动量方程(6-2-8)很容易改写为4 (9-2-2)4利用时均法则得到4 (9-2-3)9-2 湍流微分方程湍流微分方程 4展开上式,并应用时均法则,有4 (9-2-4)4将式(9-2-1)代入上式,得4 (9-2-5)4类似地可以得到y、z方向的时均形式的动量方程:4 (9-2-6)4 (9-2-7)9-2 湍流微分方程湍流微分方程 4同样可以获得时均形式的能量方程:4 (9-2-8)4式(9-2-5)(9-2-7)称为雷诺时均方程。与层流的N-S方程相
7、比,湍流的雷诺方程增加了由速度脉动值构成的附加项。由这些脉动引起的附加应力称为雷诺应力或湍流应力:4 (9-2-9)4式(9-2-8)称为湍流能量方程。同样,与层流方程相比,增加了与速度温度脉动有关的附加项,称为雷诺热流,即4 (9-2-10)4若考虑的是不可压缩湍流,二维稳态的湍流边界层流动方程组进步化简为 9-2 湍流微分方程湍流微分方程 4 4 (9-2-11)4 (9-2-12)4 (9-2-13)4边界层外伯努利方程仍然适用,即4 (9-2-14)4式(9-2-13)、(9-2-14)称为湍流边界层时均方程组。4无论是湍流时均方程组还是湍流边界层时均方程组,均是不封闭的,除层流方程中
8、出现的u、v、w、p和t等未知量外,还增加了雷诺应力和雷诺热流,因而解决湍流问题的途径必须附加相应数目的方程,使方程组封闭。目前附加方程均是以半经验理论为依据的。9-2 湍流微分方程湍流微分方程 49-3-1 湍流应力与湍流热流湍流应力与湍流热流41877年布斯涅斯克提出,湍流应力与速度梯度的关系可以按粘性应力的形式表示,即4 (9-3-1)9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介 4其中t称为湍流动力粘度,称为湍流运动粘度或湍流动量扩散率。类似地,湍流热流可表示为4 (9-3-2)9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介 9-3 湍流半经验理论
9、与湍流模型简介湍流半经验理论与湍流模型简介 4考虑上一节结出的湍流边界层时均方程,湍流应力和湍流热流可以表示为4 (9-3-3)4 (9-3-4)4显然,类比的概念与形式较容易接受,但物理本质上湍流应力与湍流热流同粘性应力与分子扩散有根本的区别。对于湍流,t的大小不仅同脉动有关,还与时均速度有关,已不是流体物性;同样,at也不是流体的特性,布斯涅斯克理论只是进一步简化时均方程以使之便于封闭。9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介 49-3-2 普朗特混合长度理论普朗特混合长度理论4根据1925年普朗特提出的动量混合长度理论,可以讨论湍流运动粘度t的数量级。如图9-3所
10、示,4假设位于y层的流体微团的x方向的时均速度为 。由于横向脉 动,微团移向壁面到达 位置,此处微团的时均速度 是 ,是微团保持仍被识别的混合长度。假设流体微团 从y到 仍保持x方向动量不变,x方向的速度脉动 的数量级显然是 ,即4 (9-3-5)9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介 9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介 4由连续性力程可知,横向脉动速度 与 有相同的数量级:4 (9-3-6)4显然有 4 (9-3-7)4根据湍流应力定义,有4 (9-3-8)4式中l为普朗特混合长度。9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍
11、流模型简介 4不同的流动有不同的混合长度,不存在确定混合长度的通用准则,它与物性和速度无关,只取决于流体微团脉动的距离,或者是与流场某个特征尺寸有关。对于湍流边界层流动,普朗特假定它和距壁面的法向距离成正比:4 (9-3-9)4式中k称为冯卡门常数。4代入式(9-3-8)得到4 (9-3-10)4对于湍流边界层流动,在 区域,;当 时,l近似为常数,即 4 (9-3-11)4 普朗特混合长度理论,用简单的代数关系式将湍流动量扩散率与时均速度联系起来,而未附加新的微分方程来确定t,故称为零方程模型。9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介 4在理论方面,普朗特混合长度理论
12、仍有缺陷。在管内流动的中心线上,t应为零,但这与实验结果不符。在其它一些情况,如射流等,这一理论也不能解释实验现象。此外,卡门等也提出了自己的零方程模型,但同样也存在各自的不足,详细讨论可参阅文献。49-3-3 湍流的湍流的方程模型方程模型4从前面的分析不难看出,混合长度理论的基础是布斯涅斯克湍流应力假设。它将t与时均速度关联起来,只考虑了几何位置和时均速度分布的影响,而未涉及湍流自身的特性41945年,普朗特首先提出了所谓方程模型,认为分子微团的脉动具有一定的动能。若定义湍流脉动动能为4 (9-3-12)9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介 4以湍流脉动动能的平方
13、根作为湍流脉动的特征速度,普朗特和科合莫可洛认为、湍流动量扩散率与湍流动能K的特征速度成正比,即4 (9-3-13)4式中L为湍流脉动尺度,为实验确定的系数。4应用布斯涅斯克假设以及式(9-3-13)确定的湍流应力,又增加了未知量K、L,因而必须附加求解K和L的方程,方能使方程组封闭。K的表达式可以根据N-S方程的瞬时表达式和时均形式导出(详细推导参阅文献):4 (9-3-14)9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介 4式中p为湍流生成项,是湍流应力在时均场中作的变形功:4 (9-3-15)4湍流应力可用式(9-3-13)确定,式(9-3-14)中的最后一项计入湍流耗
14、散项:4 (9-3-16)4 K方程中的t称为脉动动能的普朗特数,值取为1.0左右;CD的数值范围是0.080.38。4湍流尺度L可以由实验确定或根据普朗特混合长度计算,因而附加方程中只有K方程是微分形式,故称为方程模型。这种模型适用于计算边界层流动。9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介49-3-4 K-模型模型4由式(9-3-16)可知,K、L之间存在一定关系,只有两个变量是独立的,因此可以用K、来代表K、L:4 (9-3-17)4式中 。4K方程(9-3-14)可以表示为4 (9-3-18)9-3 湍流半经验理论与湍流模型简介湍流半经验理论与湍流模型简介4类似地
15、可以得到耗散率方程:4 (9-3-19)4 这样,湍流时均方程组附加K方程和方程就构成了封闭方程组。由于在这一湍流模型中,采用了K方程和方程,因此称为K-方程模型。模型中有关系数见表9-1。4表9-1 湍流中各系数的数值4表9-1给定的有关系数的数值是由一些特定实验确定的,有一定的适用范围通常K-模型及表9-l称为高雷诺数模型,仅适用于距壁画一定距离的湍流区域。在贴壁处的粘性底层,湍流雷诺数较小,应考虑分子影响,需进行修正。对于湍流自然对流,则应采用低雷诺数模型,并考虑浮升力对K、方程的影响。9-4 湍流边界层流动与换热湍流边界层流动与换热 49-4-1 湍流边界层速度分布湍流边界层速度分布4
16、本章第二节已述,常物性不可压缩流体的二维稳态湍流边界层时均方程为4 (9-4-1)9-4 湍流边界层流动与换热湍流边界层流动与换热 4当 ,湍流强度4时,如果沿流动方向压力梯度 为零,则动量方程右侧只有摩擦项。4图9-4给出了边界层流动的实验结果。从实验结果分析已知,在离壁面足够近的区域,惯性项很小,速度脉动也较小,时均速度梯度较大。随着距壁面距离的增加脉动加强,达到最大值后又逐渐减少,直到主流区,时均速度梯度趋于平坦。4这样,沿平壁法向可以将湍流边界层分为两个区域:内层区和外层区(或壁区和尾迹区)。内层区(壁区)约占边界层厚度的20,其中大部分处于湍流状态,只是紧靠壁面处,湍流应力减弱,粘性
17、应力起主导作用。这一薄层称为粘性底层如图9-4。而在外层区,湍流应力仍是主要的,但时均速度梯度比壁区小、意味着外层区湍流的生成项所占比例也小。9-4 湍流边界层流动与换热湍流边界层流动与换热 9-4 湍流边界层流动与换热湍流边界层流动与换热 4实验表明,壁区流线基本上平行于壁面,沿x方向 。由连续方程,速度分量 亦为零。对于外掠平板边界层流动4则有4 (9-4-2)4表明硅区外掠平壁湍流边界层流动的总应力与距壁而的距离y无关,而等于壁画处的切应力w,即4 (9-4-3)9-4 湍流边界层流动与换热湍流边界层流动与换热 4显然,具有速度的量纲,称为摩擦速度,用 表示。引入无量纲参数4式(9-4-
18、3)改写为 (9-4-4)4式中 只是 的函数。4 给出合适的t模型,通过积分式(9-4-4),可以得到靠近壁面区域的无量纲速度分布。4普朗特将壁区分为两层:粘性底层和湍流核心区。在粘性底层 t,式(9-4-4)简化得到4 (9-4-5)4在湍流核心区 1,边界层大部分区域Prt 0.9,而管内流动的中心处Prt 0.7,但取Prt=1可使问题简化。9-4 湍流边界层流动与换热湍流边界层流动与换热4壁面处的温度分析:4y方向的一维热流密度4 (9-4-23)4或 4 (9-4-24)4当y不大时,认为q保持不变,并等于壁面处的数值,即4 q=qw (9-4-25)4取无量纲参数4 (9-4-2
19、6)9-4 湍流边界层流动与换热湍流边界层流动与换热4将式(4-4-24)、(4-4-25)代人式(4-4-23)得到4 (9-4-27)4一般将边界层分为三个区域:4粘性底层4缓冲层 4湍流核心 4边界层的总温差由三部分组成,即4 9-4 湍流边界层流动与换热湍流边界层流动与换热4写成无量纲形式,为4 (9-4-28)4下标s、b、t分别表示粘性底层,缓冲层和湍流核心层。在粘性底层,at a,式(9-4-26)简化为4则4 (9-4-29)4缓冲层4 (9-4-40)9-4 湍流边界层流动与换热湍流边界层流动与换热4令=w,无量纲化,有4 (9-4-31)4由流体力学可知,缓冲层的速度分布为
20、 4即 4代入式(9-4-30),得4若Prt为常数,则有4 9-4 湍流边界层流动与换热湍流边界层流动与换热4湍流核心区,分子扩散可以忽略,即4即4 (9-4-32)4考虑式(9-4-29),有4 (9-4-33)4若Prt为常数,则4将边界层三层的温差相加,得到总温差4 (9-4-34)9-4 湍流边界层流动与换热湍流边界层流动与换热4由考虑牛顿冷却公式 4得到 4进一步有4由于 4得到 9-4 湍流边界层流动与换热湍流边界层流动与换热4若Pr=1近似有 4 (9-4-35)4将式(9-4-21)的解4代入雷诺比拟,有4 (9-4-36)4整个壁面长度的平均换热关联式为4 (9-4-37)
21、4若壁面为常热流状况,则4 (9-4-38)9-5 管内湍流流动与换热管内湍流流动与换热 49-5-1 管内湍流流动4若物性是常数,湍流的速度场和温度场可以分别求解。4管内湍流充分发展时 ,描述管内湍流的二维轴对称流动的动量方程为4式中vr为径向速度。4 (9-5-1)9-5 管内湍流流动与换热管内湍流流动与换热 4同样,应用雷诺应力描述4总应力4 (9-5-2)4若压力p只是x的函数,式(9-5-1)简化为4积分后,有4 (9-5-3)4即 (9-5-4)9-5 管内湍流流动与换热管内湍流流动与换热 4比较式(9-5-3)和式(9-5-4)得4 (9-5-5)4定义距壁面距离为y则 。得到4
22、 (9-5-6)4即总应力在径向上呈线性分布。4类似湍流边界层流动,引入无量纲变量4得到无量纲化动量方程4 (9-5-7)9-5 管内湍流流动与换热管内湍流流动与换热 4对近壁处,1,式(9-5-7)与边界层流动方程式(9-4-4)一样,即在壁区速度分布是相同的。4管内湍流流动与湍流边界层流动的区别是不存在边界层外缘处脉动的间歇,可以用通用速度分布描述整个管截面。需要强调的是,在圆管中心线处 并不等于零,与实际不符。4在湍流核心区域 t,式(9-5-7)可写为4 (9-5-8)4在 处,出现t/=0,与实际不符。不同研究者推荐了各种计算涡流动量扩散率的公式。9-5 管内湍流流动与换热管内湍流流
23、动与换热 4管内湍流充分发展时,普朗特基于通用阻力公式得到4 (9-5-9)4积分得到 4进一步得到 9-5 管内湍流流动与换热管内湍流流动与换热 4由于Cf和壁面摩擦系数f的关系,得到4 (9-5-10)4而 4得 (9-5-11)4由实验知,常数0.91改为0.8更为合理,因而4 (9-5-12)9-5 管内湍流流动与换热管内湍流流动与换热 49-5-2 常热流时管内充分发展湍流的换热常热流时管内充分发展湍流的换热4同样,热边界层分为三个区域,并分别处理。管中心线与壁面间总温差为4 (9-5-13)4换热公式4 (9-5-14)4假设速度分布为1/7次方指数分布时,有 9-5 管内湍流流动
24、与换热管内湍流流动与换热 4根据混合平均温度定义,有4代入速度分布,得 4因而有4 (9-5-15)4有关不同严Pr数范围的讨论,详见有关文献。9-5 管内湍流流动与换热管内湍流流动与换热 49-5-3 常壁温管内充分发展湍流的换热常壁温管内充分发展湍流的换热4换热器一侧流体热容量远大于另一侧流体热容量时,可按常壁温边界处理。有关详细讨论,限于篇幅,不再给出。4下面给出常壁温时Nu和常热流时Nu的比值NuH/NuT随Re和Pr变化的曲线(见图9-5)。Pr数较小时两者差别很明显,其原因是Pr数对温度分布的影响:Pr数小时,分子扩散为主,热阻在整个截面上分布;高Pr数时,热阻主要在近壁区,形成近似乎行的温度剖面与加热条件几乎无关,因而高Pr数时Nu数对壁温或热流的改变不敏感。9-5 管内湍流流动与换热管内湍流流动与换热