2023学年江苏省无锡市华士片九年级数学第一学期期末考试试题含解析.doc

上传人:刀*** 文档编号:87548265 上传时间:2023-04-16 格式:DOC 页数:24 大小:1.51MB
返回 下载 相关 举报
2023学年江苏省无锡市华士片九年级数学第一学期期末考试试题含解析.doc_第1页
第1页 / 共24页
2023学年江苏省无锡市华士片九年级数学第一学期期末考试试题含解析.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2023学年江苏省无锡市华士片九年级数学第一学期期末考试试题含解析.doc》由会员分享,可在线阅读,更多相关《2023学年江苏省无锡市华士片九年级数学第一学期期末考试试题含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023学年九年级上学期数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1如图,在O中,弦AB6,半径OCAB于P,且P为OC的中点,则AC的长是()A2 B3C4D2 2下列图形中,既是轴对称图形又是中心对称图形的是()ABCD3已知为常数,点在第二象限,则关于的方程根的情况是( )A有两个相等的实数根B有两个不相等的实数根C没有实数根D无法判断4一元二次方程的常数项是(

2、)A4B3C1D25下列图形中,既是轴对称图形又是中心对称图形的共有( )A1个B2个C3个D4个6如图,是的直径,是弦,点是劣弧(含端点)上任意一点,若,则的长不可能是( )A4B5C12D137如图是二次函数的图象,使成立的 的取值范围是( )ABCD8王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A5%B20%C15%D10%9在同一平面直角坐标系中,若抛物线与关于y轴对称,则符合条件的m,n的值为( )Am=,n=Bm=5,n= -6Cm= -1,n=6Dm=1,n= -210关于x的一元二次方程有两

3、个实数根,则k的值( )A0或2B-2或2C-2D2二、填空题(每小题3分,共24分)11如图,把ABC沿AB边平移到ABC的位置,它们的重叠部分(即图中的阴影部分)的面积是ABC的面积的一半,若AB= 2 ,则此三角形移动的距离AA=_12如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为_cm13已知直线y=kx(k0)经过点(12,5),将直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相交(点O为坐标原点),则m的取值范围为_

4、14分解因式:x34x212x=_15把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系:h=20t-5t2,当小球达到最高点时,小球的运动时间为第_秒时16如图,矩形的对角线、相交于点,AB与BC的比是黄金比,过点C作CEBD,过点D作DEAC,DE、交于点,连接AE,则tanDAE的值为_.(不取近似值)17在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同。搅匀后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是_18如图,RtABC中,ACB90,BC3,tanA,将RtABC绕点C顺时针旋转90得到DEC,点F是DE上一动

5、点,以点F为圆心,FD为半径作F,当FD_时,F与RtABC的边相切三、解答题(共66分)19(10分)如图,在梯形中,是延长线上的点,连接,交于点(1)求证:(2)如果,求的长20(6分)如图,在平面直角坐标系中,A ,B (1)作出与OAB关于轴对称的 ;(2)将OAB绕原点O顺时针旋转90得到,在图中作出;(3)能否由通过平移、轴对称或旋转中的某一种图形变换直接得到?如何得到?21(6分)学校打算用长米的篱笆围城一个长方形的生物园饲养小兔,生物园的一面靠在长为米的墙上(如图)(1)若生物园的面积为平方米,求生物园的长和宽;(2)能否围城面积为平方米的生物园?若能,求出长和宽;若不能,请说

6、明理由22(8分)如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_;(3)点是第四象限内抛物线上的动点,连接和求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由23(8分)如图,BAD是由BEC在平面内绕点B旋转60而得,且ABBC,BECE,连接DE(1)求证:BDEBCE;(2)试判断四边形ABED的形状,并说明理由24(8分)给出定义,若一个四边形中存在相邻两边的平方和等于一条

7、对角线的平方,则称该四边形为勾股四边形(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将ABC绕顶点B按顺时针方向旋转60得到DBE,连接AD,DC,CE,已知DCB=30求证:BCE是等边三角形;求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形25(10分)在平面直角坐标系xOy中,对称轴为直线x1的抛物线yax2+bx+8过点(2,0)(1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若ACBD,试求平移后所得抛物线的表达式2

8、6(10分)如图,在ABC中,CD是边AB上的中线,B是锐角,sinB=,tanA=,AC=,(1)求B 的度数和 AB 的长(2)求 tanCDB 的值参考答案一、选择题(每小题3分,共30分)1、A【分析】根据垂径定理求出AP,根据勾股定理求出OP,求出PC,再根据勾股定理求出即可【详解】解:连接OA,AB6,OCAB,OC过O,APBPAB3,设O的半径为2R,则POPCR,在RtOPA中,由勾股定理得:AO2OP2+AP2,(2R)2R2+32,解得:R,即OPPC,在RtCPA中,由勾股定理得:AC2AP2+PC2,AC232+()2,解得:AC2,故选:A【点睛】考核知识点:垂径定

9、理.构造直角三角形是关键.2、A【分析】根据轴对称图形与中心对称图形的概念进行判断即可【详解】解:A、是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意故选:A【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合3、B【分析】根据判别式即可求出答案【详解】解:由题意可知:,故选:B【点睛】本题考查的是一元二次方程根的判别式,解题的关

10、键是熟练运用根的判别式,本题属于基础题型4、A【分析】一元二次方程ax2+bx+c0(a,b,c是常数且a0)中a、b、c分别是二次项系数、一次项系数、常数项【详解】解:一元二次方程的常数项是4,故选A【点睛】本题考查了一元二次方程的一般形式:ax2+bx+c0(a,b,c是常数且a0)特别要注意a0的条件这是在做题过程中容易忽视的知识点在一般形式中ax2叫二次项,bx叫一次项,c是常数项其中a、b、c分别叫二次项系数,一次项系数,常数项5、B【分析】根据中心对称图形和轴对称图形的概念即可得出答案.【详解】根据中心对称图形和轴对称图形的概念,可以判定既是中心对称图形又是轴对称图形的有第3第4个

11、共2个.故选B考点:1.中心对称图形;2.轴对称图形.6、A【分析】连接AC,如图,利用圆周角定理得到ACB=90,利用勾股定理得到AC=5,则5AP1,然后对各选项进行判断【详解】解:连接AC,如图,AB是O的直径,ACB=90,,点P是劣弧(含端点)上任意一点,ACAPAB,即5AP1故选:A【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径7、A【分析】先找出抛物线与x轴的交点坐标,根据图象即可解决问题【详解】解:由图象可知,抛物线与x轴的交点坐标分别为(-3,0)和(

12、1,0),时,x的取值范围为故选:A【点睛】本题考查抛物线与x轴的交点,对称轴等知识,解题的关键是学会数形结合,根据图象确定自变量的取值范围,属于中考常考题型8、D【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余5000(1+x)3000元,再存一年则有方程5000(1+x)3000(1+x)2750,解这个方程即可求解【详解】设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)3000,同理两年后是5000(1+x)3000(1+x),即方程为5000(1+x)3000(1+x)2750,解得:x110%

13、,x2150%(不符合题意,故舍去),即年利率是10%故选:D【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和 = 本金 (1+ 利率 期数),难度一般9、D【解析】由两抛物线关于y轴对称,可知两抛物线的对称轴也关于y轴对称,与y轴交于同一点,由此可得二次项系数与常数项相同,一次项系数互为相反数,由此可得关于m、n的方程组,解方程组即可得.【详解】关于y轴对称,二次项系数与常数项相同,一次项系数互为相反数,解之得,故选D.【点睛】本题考查了关于y轴对称的抛物线的解析式间的关系,弄清系数间的关系是解题的关键.10、D【分析】将化简可得,利用韦达定理,解得,

14、k2,由题意可知0,可得k2符合题意.【详解】解:由韦达定理,得:k1,,由,得:,即,所以,,化简,得:,解得:k2,因为关于x的一元二次方程有两个实数根,所以,0,k2不符合,所以,k2故选D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.二、填空题(每小题3分,共24分)11、【分析】由题意易得阴影部分与ABC相似,然后根据相似三角形的面积比是相似比的平方可求解【详解】解:把ABC沿AB边平移到ABC的位置,它们的重叠部分(即图中的阴影部分)的面积是ABC的面积的一半,AB=2,即,;故答案为【点睛】本题主要考查相似三角形的性质,熟练掌握相似三角形的性质是

15、解题的关键12、1【分析】由于所有的环形是同心圆,画出同心圆圆心,设弧AB所在的圆的半径为r,利用勾股定理列出方程即可解答【详解】解:设弧AB所在的圆的半径为r,如图作OEAB于E,连接OA,OC,则OA=r,OC=r+32, OEAB,AE=EB=100cm,在RTOAE中,在RTOCE中,则 解得:r=1故答案为:1【点睛】本题考查垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题13、0m【解析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答【详解】把点(12,5)代入直线y=kx

16、得,5=12k,k=;由y=x平移m(m0)个单位后得到的直线l所对应的函数关系式为y=x+m(m0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,A(m,0),B(0,m),即OA=m,OB=m,在RtOAB中,AB=,过点O作ODAB于D,SABO=ODAB=OAOB,OD=mm,m0,解得OD=m,由直线与圆的位置关系可知m 6,解得m,故答案为0m.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.14、x(x2)(x6)【分

17、析】因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底首先提取公因式x,然后利用十字相乘法求解,【详解】解:x34x212x=x(x24x12)=x(x+2)(x6)【点睛】本题考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正确计算是本题的解题关键.15、1【解析】h=10t-5t1=-5(t-1)1+10,-50,函数有最大值,则当t=1时,球的高度最高故答案为116、【分析】根据AB与BC的比是黄金比得到ABBC=,连接OE与CD交于点G,过E点作EFAF交AD延长线于F,证明四边形CEDO是菱形,得到 ,即可求出tanDAE的值;【详解】解:AB与BC的比

18、是黄金比,ABBC=连接OE与CD交于点G,过E点作EFAF交AD延长线于F,矩形的对角线、相交于点,CEBD,DEAC,四边形CEDO是平行四边形,又是矩形,OC=OD,四边形CEDO是菱形(邻边相等的平行四边形是菱形),CD与OE垂直且平分, ,tanDAE ,故答案为:;【点睛】本题主要考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、黄金分割比,掌握邻边相等的平行四边形是菱形是解题的关键;17、.【分析】用列表法或画树状图法分析所有等可能的结果,然后根据概率公式求出该事件的概率【详解】解:画树状图如下:一共有6种情况,两个球都是白球有2种,P(两个球都是白球),故答案为:【点

19、睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比18、或【分析】如图1,当F与RtABC的边AC相切时,切点为H,连接FH,则HFAC,解直角三角形得到AC4,AB5,根据旋转的性质得到DCEACB90,DEAB5,CDAC4,根据相似三角形的性质得到DF;如图2,当F与RtABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为F的直径,根据相似三角形的性质即可得到结论【详解】如图1,当F与RtABC的边AC相切时,切点为H,连接FH,则HFAC,DFHF,RtABC

20、中,ACB90,BC3,tanA,AC4,AB5,将RtABC绕点C顺时针旋转90得到DEC,DCEACB90,DEAB5,CDAC4,FHAC,CDAC,FHCD,EFHEDC,解得:DF;如图2,当F与RtABC的边AC相切时,延长DE交AB于H,AD,AEHDECAHE90,点H为切点,DH为F的直径,DECDBH,DH,DF,综上所述,当FD或时,F与RtABC的边相切,故答案为:或【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键三、解答题(共66分)19、(1)详见解析;(2)【分析】(1)根据三角形相似的判定定理,即可得到结论;(

21、2)由,得,进而即可求解【详解】(1),;(2)解:,由(1)知,即【点睛】本题主要考查相似三角形的判定和性质定理,掌握相似三角形对应边成比例,是解题的关键20、(1)见解析;(2)见解析;(3)可由沿直线翻折得到【分析】(1)先作出A1和B1点,然后用线段连接A1、B1和O点即可;(2)先作出A2和B2点,然后用线段连接A2、B2和O点即可;(3)根据(1)和(2)中B1和B2点坐标,得到OB为B1 B2的垂直平分线,因此可以判断两个图形关于直线对称【详解】(1)根据题意获得下图;(2)根据题意获得上图;(3)根据题意得,直线OB的解析式为,通过观察图像可以得到B1(-4,4)和B2(4,-

22、4),直线B1 B2的解析式为,直线OB为直线B1 B2的垂直平分线,两个图形关于直线对称,即可由沿直线翻折得到故答案为(1)见解析;(2)见解析;(3)可由沿直线翻折得到【点睛】本题考查了旋转的坐标变换,做旋转图形,轴对称图形的判断,是图形变化中的重点题型,关键是先作出对应点,然后进行连线21、(1)生物园的宽为米,长为米;(2)不能围成面积为平方米的生物园,见解析【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16-2x)米,根据长方形的面积公式结合生物园的面积为30平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(2)设垂直于墙的一边长为y米,则平行于墙的

23、一边长为(16-2y)米,根据长方形的面积公式结合生物园的面积为35平方米,即可得出关于y的一元二次方程,由根的判别式0可得出该方程无解,进而可得出不能围成面积为35平方米的生物园【详解】解:(1)设生物园的宽为米,那么长为米,依题意得:,解得,当时,不符合题意,舍去,答:生物园的宽为米,长为米(2)设生物园的宽为米,那么长为米,依题意得:,此方程无解,不能围成面积为平方米的生物园【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键22、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、为顶点的四边形是平行四边形,,点坐标为,【分析

24、】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1) 抛物线过点,解得:抛物线解析式为(2) 点,抛物线对称轴为直线点在直线上,点,关于直线对称,当点、在同一直线上时,最小抛物线解析式为,C(0,-6),设直线解析式为,解得:直线:,故答案为:(3)过点作轴于点,交直线与点,设,则,当时,面积最大为,此时点坐标为(4)存在点,使以点、为顶点的四边形是平行四边形

25、设N(x,y),M(,m),四边形CMNB是平行四边形时,CMNB,CBMN,x= ,y= = ,N(,);四边形CNBM是平行四边形时,CNBM,CMBN,x=,y=N(,);四边形CNMB是平行四边形时,CBMN,NCBM,x=,y=N(,);点坐标为(,),(,),(,)【点睛】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质,灵活运用数形结合思想得到坐标之间的关系是解题的关键23、证明见解析.【分析】(1)根据旋转的性质可得DB=CB,ABD=EBC,ABE=60,然后根据垂直可得出DBE=CBE=30,继而可根据SAS证明BDEBCE;(2)根据(1)以及旋转的性质可得,B

26、DEBCEBDA,继而得出四条棱相等,证得四边形ABED为菱形【详解】(1)证明:BAD是由BEC在平面内绕点B旋转60而得,DB=CB,ABD=EBC,ABE=60,ABEC,ABC=90,DBE=CBE=30,在BDE和BCE中,BDEBCE;(2)四边形ABED为菱形;由(1)得BDEBCE,BAD是由BEC旋转而得,BADBEC,BA=BE,AD=EC=ED,又BE=CE,BA=BE=ED= AD四边形ABED为菱形考点:旋转的性质;全等三角形的判定与性质;菱形的判定24、 (1)正方形、矩形、直角梯形均可;(1)证明见解析证明见解析【分析】(1)根据定义和特殊四边形的性质,则有矩形或

27、正方形或直角梯形;(1)首先证明ABCDBE,得出AC=DE,BC=BE,连接CE,进一步得出BCE为等边三角形;利用等边三角形的性质,进一步得出DCE是直角三角形,问题得解【详解】解:(1)正方形、矩形、直角梯形均可;(1)ABCDBE,BC=BE,CBE=60,BCE是等边三角形;ABCDBE,BE=BC,AC=ED;BCE为等边三角形,BC=CE,BCE=60,DCB=30,DCE=90,在RtDCE中,DC1+CE1=DE1,DC1+BC1=AC1考点:四边形综合题25、(1)y=x2+2x+8,其顶点为(1,9)(2)y=x2+2x+3【分析】(1)根据对称轴为直线x=1的抛物线y=

28、ax2+bx+8过点(2,0),可得,解得即可求解,(2)设令平移后抛物线为, 可得D(1,k),B(0,k-1),且,根据BC平行于x轴,可得点C与点B关于对称轴x=1对称,可得C(2,k-1), 根据,解得,即.作DHBC于H,CTx轴于T, 则在DBH中,HB=HD=1,DHB=90, 又ACBD,得CTADHB,所以CT=AT,即, 解得k=4,即可求平移后的二次函数解析式.【详解】(1)由题意得:,解得:, 所以抛物线的表达式为,其顶点为(1,9). (2)令平移后抛物线为, 易得D(1,k),B(0,k-1),且, 由BC平行于x轴,知点C与点B关于对称轴x=1对称,得C(2,k-

29、1), 由,解得(舍正),即. 作DHBC于H,CTx轴于T, 则在DBH中,HB=HD=1,DHB=90, 又ACBD,得CTADHB,所以CT=AT,即, 解得k=4,所以平移后抛物线表达式为.26、(1)B的度数为45,AB的值为3;(1)tanCDB的值为1【分析】(1)作CEAB于E,设CE=x,利用A的正切可得到AE=1x,则根据勾股定理得到AC=x,所以x=,解得x=1,于是得到CE=1,AE=1,接着利用sinB=得到B=45,则BE=CE=1,最后计算AE+BE得到AB的长;(1)利用CD为中线得到BD=AB=1.5,则DE=BD-BE=0.5,然后根据正切的定义求解【详解】(1)作 CEAB 于 E,设 CEx,在RtACE中,tanA,AE1x,ACx,x,解得x1,CE1,AE1,在RtBCE中,sinB,B45,BCE为等腰直角三角形,BECE1,ABAE+BE3,答:B的度数为45,AB的值为3;(1)CD为中线,BDAB1.5,DEBDBE1.510.5,tanCDE=1,即tanCDB的值为1【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形解决此类题目的关键是熟练应用勾股定理和锐角三角函数的定义

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 习题库

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁