扫描探针显微技术.pptx

上传人:莉*** 文档编号:87529659 上传时间:2023-04-16 格式:PPTX 页数:56 大小:4.51MB
返回 下载 相关 举报
扫描探针显微技术.pptx_第1页
第1页 / 共56页
扫描探针显微技术.pptx_第2页
第2页 / 共56页
点击查看更多>>
资源描述

《扫描探针显微技术.pptx》由会员分享,可在线阅读,更多相关《扫描探针显微技术.pptx(56页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、扫描探针显微技术扫描探针显微技术 第一代为光学显微镜第一代为光学显微镜 1830年代后期为M.Schleide和T.Schmann所发明;它使人类“看”到了致病的细菌、微生物和微米级的微小物体,对社会的发展起了巨大的促进作用,至今仍是主要的显微工具.一般的光学显微镜的分辨率250nm第1页/共56页第二代为电子显微镜第二代为电子显微镜 20世纪三十年代早期卢斯卡(E.Ruska)发明了电子显微镜,使人类能”看”到病毒等亚微米的物体,它与光学显微镜一起成了微电子技术的基本工具。扫描电子显微镜(横向分辨率35nm),不能用来直接观察分子和原子。第2页/共56页第三代为扫描探针显微镜第三代为扫描探针

2、显微镜 也可简称为纳米显微镜。也可简称为纳米显微镜。1981年葛宾尼和罗雷尔发年葛宾尼和罗雷尔发明了明了扫描隧道显微镜(扫描隧道显微镜(STM),),使人类实现了观察单个使人类实现了观察单个原子的原望;原子的原望;1985年比尼格应奎特(年比尼格应奎特(C.F.Quate)发明了)发明了可适用于非导电样品的可适用于非导电样品的原子力显微镜(原子力显微镜(AFM),),也具有也具有原子分辨率,与扫描隧道显微镜一起构建了扫描探针显原子分辨率,与扫描隧道显微镜一起构建了扫描探针显微镜(微镜(SPM)系列。扫描探针技术()系列。扫描探针技术(STMSTM横向横向0.10.10.2 0.2 nmnm,纵

3、向,纵向0.01nm0.01nm),可以直接观察分子、原子。可以直接观察分子、原子。STMSTM使人类第一次能够使人类第一次能够实时地实时地观察单个原子在物质表观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质面的排列状态和与表面电子行为有关的物化性质,在表,在表面科学、材料科学、生命科学等领域的研究中有着重大面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为的意义和广泛的应用前景,被国际科学界公认为2020世纪世纪8080年代世界十大科技成就之一为表彰年代世界十大科技成就之一为表彰STMSTM的发明者们对的发明者们对科学研究所作出的杰出贡献

4、,科学研究所作出的杰出贡献,19861986年宾尼和罗雷尔被授年宾尼和罗雷尔被授予诺贝尔物理学奖金予诺贝尔物理学奖金第3页/共56页第4页/共56页三代显微镜的观察范围及典型物体三代显微镜的观察范围及典型物体 第5页/共56页扫描探针显微镜的特点扫描探针显微镜的特点分辨率分辨率分辨率分辨率工作环境工作环境工作环境工作环境样品环境样品环境样品环境样品环境温度温度温度温度对样品对样品对样品对样品破坏程度破坏程度破坏程度破坏程度检测深度检测深度检测深度检测深度扫描探扫描探扫描探扫描探针显微针显微针显微针显微镜镜镜镜原子级原子级原子级原子级(0.1nm)(0.1nm)(0.1nm)(0.1nm)实环境

5、、大实环境、大实环境、大实环境、大气、溶液、气、溶液、气、溶液、气、溶液、真空真空真空真空 室温或低室温或低室温或低室温或低温温温温 无无无无 100100mm量级量级量级量级 透射电镜点分辨(0.30.5nm)晶格分辨(0.10.2nm)高真空 室温 小 接近SEM,但实际上为样品厚度所限,一般小于100nm.扫描电镜610nm 高真空 室温 小 10mm(10倍时)1m(10000倍时)场离子显微镜 原子级 超高真空 3080K 有 原子厚度 相较于其它相较于其它相较于其它相较于其它显微镜技术的各项性能指标比较显微镜技术的各项性能指标比较显微镜技术的各项性能指标比较显微镜技术的各项性能指标

6、比较 第6页/共56页扫描探针技术(扫描探针技术(SPM)实际上一类显微术)实际上一类显微术的总称,都是在扫描隧道显微镜的基础上的总称,都是在扫描隧道显微镜的基础上发展起来的,发展起来的,其中最常用的有扫描隧道显微镜(其中最常用的有扫描隧道显微镜(STM)和原子力显微镜(和原子力显微镜(AFM),这两种方法互),这两种方法互为补充。为补充。第7页/共56页STM要求被测样品必须是导体或半导体,要求被测样品必须是导体或半导体,虽然不导电的样品可以通过镀金膜或碳膜虽然不导电的样品可以通过镀金膜或碳膜在其表面形成一层导电膜,但膜的粒度和在其表面形成一层导电膜,但膜的粒度和均匀性直接影响对真实表面的分

7、辨率造成均匀性直接影响对真实表面的分辨率造成失真。失真。AFM可用于非导体,但要求样品的粘度不可用于非导体,但要求样品的粘度不能太大,否则将直接影响分辨率。能太大,否则将直接影响分辨率。第8页/共56页SPMSPM技术的特点:技术的特点:技术的特点:技术的特点:(1 1)具有原子级的分辨率(横向)具有原子级的分辨率(横向)具有原子级的分辨率(横向)具有原子级的分辨率(横向0.10.10.2nm0.2nm,纵向纵向纵向纵向0.01nm0.01nm););););(2 2)可以观察单个原子层的局部表面结构;)可以观察单个原子层的局部表面结构;)可以观察单个原子层的局部表面结构;)可以观察单个原子层

8、的局部表面结构;(3 3)可以得到表面电子结构的有关信息;)可以得到表面电子结构的有关信息;)可以得到表面电子结构的有关信息;)可以得到表面电子结构的有关信息;(4 4)可以实时、实空间地观察表面的三维图像,)可以实时、实空间地观察表面的三维图像,)可以实时、实空间地观察表面的三维图像,)可以实时、实空间地观察表面的三维图像,可以观测到表面的原子的扩散、迁移等过程。可以观测到表面的原子的扩散、迁移等过程。可以观测到表面的原子的扩散、迁移等过程。可以观测到表面的原子的扩散、迁移等过程。(5 5)可以在不同条件下,如真空、大气、常温、)可以在不同条件下,如真空、大气、常温、)可以在不同条件下,如真

9、空、大气、常温、)可以在不同条件下,如真空、大气、常温、低温、高温、溶液等条件下工作,不需要特别备低温、高温、溶液等条件下工作,不需要特别备低温、高温、溶液等条件下工作,不需要特别备低温、高温、溶液等条件下工作,不需要特别备制样品,对样品无损伤,能在缓冲溶液中直接观制样品,对样品无损伤,能在缓冲溶液中直接观制样品,对样品无损伤,能在缓冲溶液中直接观制样品,对样品无损伤,能在缓冲溶液中直接观察生物样品的表面结构,能在高温环境下工作。察生物样品的表面结构,能在高温环境下工作。察生物样品的表面结构,能在高温环境下工作。察生物样品的表面结构,能在高温环境下工作。(6 6)除了用于成像、显微观测,还可以

10、对表面)除了用于成像、显微观测,还可以对表面)除了用于成像、显微观测,还可以对表面)除了用于成像、显微观测,还可以对表面的原子、吸附的原子或分子进行移动,从而进行的原子、吸附的原子或分子进行移动,从而进行的原子、吸附的原子或分子进行移动,从而进行的原子、吸附的原子或分子进行移动,从而进行表面纳米级加工表面纳米级加工表面纳米级加工表面纳米级加工第9页/共56页19901990年,年,IBMIBM公司的科学家展示了一项令世人震公司的科学家展示了一项令世人震惊的成果,他们在金属镍表面用惊的成果,他们在金属镍表面用3535个惰性气体氙个惰性气体氙原子组成原子组成“IBM”IBM”三个英文字母。三个英文

11、字母。第10页/共56页 这是中国科学院化学所的科技人员利用纳这是中国科学院化学所的科技人员利用纳米加工技术在石墨表面通过搬迁碳原子而绘米加工技术在石墨表面通过搬迁碳原子而绘制出的世界上最小的中国地图。制出的世界上最小的中国地图。第11页/共56页金属中的自由电子具有波动性,当电子波(金属中的自由电子具有波动性,当电子波(金属中的自由电子具有波动性,当电子波(金属中的自由电子具有波动性,当电子波()向表面传播遇到边)向表面传播遇到边)向表面传播遇到边)向表面传播遇到边界时,一部分被反射(界时,一部分被反射(界时,一部分被反射(界时,一部分被反射(RR),而另一部分则可透过边界(),而另一部分则

12、可透过边界(),而另一部分则可透过边界(),而另一部分则可透过边界(TT),),),),从而在其表面形成电子云,电子云的密度随距表面的距离成指数从而在其表面形成电子云,电子云的密度随距表面的距离成指数从而在其表面形成电子云,电子云的密度随距表面的距离成指数从而在其表面形成电子云,电子云的密度随距表面的距离成指数衰减。当两金属靠得很近时,表面的电子云可以相互渗透,即金衰减。当两金属靠得很近时,表面的电子云可以相互渗透,即金衰减。当两金属靠得很近时,表面的电子云可以相互渗透,即金衰减。当两金属靠得很近时,表面的电子云可以相互渗透,即金属属属属1 1的透射波的透射波的透射波的透射波T1T1与金属与金

13、属与金属与金属2 2的透射波的透射波的透射波的透射波T2T2相互重叠,在两金属间形相互重叠,在两金属间形相互重叠,在两金属间形相互重叠,在两金属间形成电流,这一现象被称为隧道效应,由此产生的电流为隧道电流。成电流,这一现象被称为隧道效应,由此产生的电流为隧道电流。成电流,这一现象被称为隧道效应,由此产生的电流为隧道电流。成电流,这一现象被称为隧道效应,由此产生的电流为隧道电流。隧道效应是粒子波动性体现,是一种典型的量子效应。此时,如隧道效应是粒子波动性体现,是一种典型的量子效应。此时,如隧道效应是粒子波动性体现,是一种典型的量子效应。此时,如隧道效应是粒子波动性体现,是一种典型的量子效应。此时

14、,如果在两金属或半导体上施加电压,则电子定向流动,形成隧道电果在两金属或半导体上施加电压,则电子定向流动,形成隧道电果在两金属或半导体上施加电压,则电子定向流动,形成隧道电果在两金属或半导体上施加电压,则电子定向流动,形成隧道电流。流。流。流。6.2 6.2 扫描隧道显微镜扫描隧道显微镜6.2.16.2.1隧道效应隧道效应第12页/共56页STMSTM的工作原理就是利用了电子隧道效应,用一的工作原理就是利用了电子隧道效应,用一的工作原理就是利用了电子隧道效应,用一的工作原理就是利用了电子隧道效应,用一个曲率半径个曲率半径个曲率半径个曲率半径R R为原子尺寸的针尖在样品表面扫描,为原子尺寸的针尖

15、在样品表面扫描,为原子尺寸的针尖在样品表面扫描,为原子尺寸的针尖在样品表面扫描,当针尖与样品表面非常接近时,由于隧道效应可当针尖与样品表面非常接近时,由于隧道效应可当针尖与样品表面非常接近时,由于隧道效应可当针尖与样品表面非常接近时,由于隧道效应可在针尖与样品表面之间形成隧道电流在针尖与样品表面之间形成隧道电流在针尖与样品表面之间形成隧道电流在针尖与样品表面之间形成隧道电流:I:I s(0,EF)exps(0,EF)exp(-2kZ)(-2kZ)式中,式中,式中,式中,s(0,EF)s(0,EF)为样品表面费米能级为样品表面费米能级为样品表面费米能级为样品表面费米能级EFEF处的局处的局处的局

16、处的局域态密度,域态密度,域态密度,域态密度,Z Z为针尖与样品的距离,为针尖与样品的距离,为针尖与样品的距离,为针尖与样品的距离,k k为衰减系数,为衰减系数,为衰减系数,为衰减系数,K K取决于针尖和样品的平均功函数以及针尖与样取决于针尖和样品的平均功函数以及针尖与样取决于针尖和样品的平均功函数以及针尖与样取决于针尖和样品的平均功函数以及针尖与样品间的电压。当品间的电压。当品间的电压。当品间的电压。当Z Z增加增加增加增加0.1nm0.1nm时,时,时,时,I I减小减小减小减小1010倍,可倍,可倍,可倍,可见隧道电流见隧道电流见隧道电流见隧道电流I I对样品表面的起伏是非常敏感的对样品

17、表面的起伏是非常敏感的对样品表面的起伏是非常敏感的对样品表面的起伏是非常敏感的(纵向分辨率可达(纵向分辨率可达(纵向分辨率可达(纵向分辨率可达0.01nm0.01nm),当),当),当),当R R和和和和Z Z都小到原都小到原都小到原都小到原子尺度时,就可以得到样品表面原子排列和原子子尺度时,就可以得到样品表面原子排列和原子子尺度时,就可以得到样品表面原子排列和原子子尺度时,就可以得到样品表面原子排列和原子形态的清晰的图象。形态的清晰的图象。形态的清晰的图象。形态的清晰的图象。6.2.2 STM6.2.2 STM的工作原理的工作原理第13页/共56页隧道电流的变化曲线隧道电流的变化曲线 Ro与

18、样品表面相关的参数;与样品表面相关的参数;Z有有0.1nm的变化;的变化;IT即有数量级的变化即有数量级的变化隧道电流的变化曲线隧道电流的变化曲线 第14页/共56页STMSTM有两种工作模式:恒流模式和恒高模式。有两种工作模式:恒流模式和恒高模式。有两种工作模式:恒流模式和恒高模式。有两种工作模式:恒流模式和恒高模式。恒流:保持隧道电流恒流:保持隧道电流恒流:保持隧道电流恒流:保持隧道电流I I不变,使针尖上下移动而改变高度不变,使针尖上下移动而改变高度不变,使针尖上下移动而改变高度不变,使针尖上下移动而改变高度Z Z。恒高:保持高度恒高:保持高度恒高:保持高度恒高:保持高度Z Z,使隧道电

19、流,使隧道电流,使隧道电流,使隧道电流I I改变。改变。改变。改变。针尖沿着针尖沿着针尖沿着针尖沿着x/yx/y方向扫描,就可以得到表面三维的数据,从而得到表方向扫描,就可以得到表面三维的数据,从而得到表方向扫描,就可以得到表面三维的数据,从而得到表方向扫描,就可以得到表面三维的数据,从而得到表面原子的分布,通过计算机的数据采集系统,转化成图象直接显面原子的分布,通过计算机的数据采集系统,转化成图象直接显面原子的分布,通过计算机的数据采集系统,转化成图象直接显面原子的分布,通过计算机的数据采集系统,转化成图象直接显示出来,也可以将数据转化成三维图象。二维图象,用景深表示示出来,也可以将数据转化

20、成三维图象。二维图象,用景深表示示出来,也可以将数据转化成三维图象。二维图象,用景深表示示出来,也可以将数据转化成三维图象。二维图象,用景深表示z z方向的信息,三维图象更直接地表示。方向的信息,三维图象更直接地表示。方向的信息,三维图象更直接地表示。方向的信息,三维图象更直接地表示。第15页/共56页6.2.3 STM 6.2.3 STM 仪器仪器第16页/共56页第17页/共56页针尖的曲率曲径约为针尖的曲率曲径约为0.1m,可以得到原子,可以得到原子级分辨率的图像,在进入隧道电流状态后级分辨率的图像,在进入隧道电流状态后针尖尖端处往往能够形成单原子尖,针尖针尖尖端处往往能够形成单原子尖,

21、针尖的制备是的制备是STM中的关键问题,常用机械加中的关键问题,常用机械加工铂铱合金针尖,或用化学腐蚀的方法制工铂铱合金针尖,或用化学腐蚀的方法制取钨的针尖。化学腐蚀,加直流电压,在取钨的针尖。化学腐蚀,加直流电压,在2mol/l NaOH 溶液中腐蚀。溶液中腐蚀。1 1 针尖针尖 第18页/共56页第19页/共56页第20页/共56页2 三维扫描和控制器件STM横向分辨率为0.10.2nm,xy方向的扫描范围一般在几几百nm,与其深度分辨率0.01nm相适应,通常用压电陶瓷管的三维控制器件。同时,为了避免外界震动对扫描的影响,应加减震的阻尼系统。第21页/共56页第22页/共56页3 数据采

22、集处理(微机)数据采集处理(微机)STM的主要技术指标是分辨率,的主要技术指标是分辨率,常用高定向石墨常用高定向石墨HOPG作为检作为检测标样,如能测得表面的原子测标样,如能测得表面的原子排列图像,即排列图像,即STM仪器处于正仪器处于正常的工作状态,常的工作状态,HOPG中有三中有三种原子:种原子:A处两层原子重叠,处两层原子重叠,B处只有上层而无下层,处只有上层而无下层,C处只有处只有下层而无上层。下层而无上层。第23页/共56页第24页/共56页STM图像反映的是样品表面的局限电子结构及空间变化,而与表面原了位置无直接关系,不能将观测到的表面高低起伏简单地归结为原子的排列结构。STM的图

23、像并不直接反映表面原子核的位置,STM图像反映的是样品表面波函数的起伏,当Vb偏压改变时,探测到的是不同的表面波函数。6.2.4 STM6.2.4 STM图像解释图像解释第25页/共56页第26页/共56页在测量在测量Si(001)表面时,当偏压表面时,当偏压Vb为负时,是样品占据态的电为负时,是样品占据态的电子流向针尖(针尖带正电时)子流向针尖(针尖带正电时)反映的是反映的是Si=Si二聚原子的最高二聚原子的最高占据轨道占据轨道的空间分布,的空间分布,而而Vb为正时(针尖带负电)则为正时(针尖带负电)则是电子从针尖流向样品的未占是电子从针尖流向样品的未占据态,反映的是最低未占据态据态,反映的

24、是最低未占据态*的轨道空间分布。的轨道空间分布。第27页/共56页虽然STM图像不能简单地归结为原子的空间排布,对STM图像的解释,通过量子化学的理论计算,并结合表面分析技术(如AES、XPS等)结合起来,综合分析,数据间相互印证等方法综合运用。6.2.5 STM6.2.5 STM的应用的应用1 1 表面结构分析表面结构分析第28页/共56页第29页/共56页STM对工作环境要求较宽松,在大气、真空、溶液、高温、低温等条件下均可,对各种不同状态的表面化学研究十分便利。例如,研究原位表面的化学反应,表面吸附、表面催化、电化学腐蚀等。在Si(001)表面上 SiH3SiH2(吸附)+H(吸附)2

25、2表面化学反应研究表面化学反应研究第30页/共56页第31页/共56页3 STM信息存储信息存储STMSTM不仅能作为观测表面结构的工具,还能用于不仅能作为观测表面结构的工具,还能用于不仅能作为观测表面结构的工具,还能用于不仅能作为观测表面结构的工具,还能用于诱导表面发生局限的物理,化学性质的变化,对诱导表面发生局限的物理,化学性质的变化,对诱导表面发生局限的物理,化学性质的变化,对诱导表面发生局限的物理,化学性质的变化,对表面进行表面纳米尺寸的加工。表面进行表面纳米尺寸的加工。表面进行表面纳米尺寸的加工。表面进行表面纳米尺寸的加工。例如:用例如:用例如:用例如:用STMSTM进行超高密度数据

26、存储进行超高密度数据存储进行超高密度数据存储进行超高密度数据存储热化学热化学热化学热化学烧孔存储技术,利用烧孔存储技术,利用烧孔存储技术,利用烧孔存储技术,利用STMSTM针尖的高度局域化的隧针尖的高度局域化的隧针尖的高度局域化的隧针尖的高度局域化的隧道电流的焦耳热,诱导电荷转移复合物表面发生道电流的焦耳热,诱导电荷转移复合物表面发生道电流的焦耳热,诱导电荷转移复合物表面发生道电流的焦耳热,诱导电荷转移复合物表面发生局部热化学气化分解反应,形成纳米尺寸的信息局部热化学气化分解反应,形成纳米尺寸的信息局部热化学气化分解反应,形成纳米尺寸的信息局部热化学气化分解反应,形成纳米尺寸的信息孔阵。孔阵。

27、孔阵。孔阵。其中其中其中其中TEATEA沸点沸点沸点沸点88.988.9TCNQTCNQ通过给受体之间部分电荷移形成复合物通过给受体之间部分电荷移形成复合物通过给受体之间部分电荷移形成复合物通过给受体之间部分电荷移形成复合物晶体分解温度为晶体分解温度为晶体分解温度为晶体分解温度为195195,当施加于,当施加于,当施加于,当施加于STMSTM的的的的Pt-IrPt-Ir针针针针尖上的为尖上的为尖上的为尖上的为6V6V,停留在局部,停留在局部,停留在局部,停留在局部100s100s时,即可烧出时,即可烧出时,即可烧出时,即可烧出56nm56nm,深为,深为,深为,深为17 nm17 nm的孔,以

28、这种方式进行数据的孔,以这种方式进行数据的孔,以这种方式进行数据的孔,以这种方式进行数据存储。存储。存储。存储。第32页/共56页第33页/共56页6.3 原子力显微镜(原子力显微镜(AFM)STMSTM以具分辨率高,应用范围广等特点,但也有以具分辨率高,应用范围广等特点,但也有以具分辨率高,应用范围广等特点,但也有以具分辨率高,应用范围广等特点,但也有局限性,对不导电的样品,或对表面有较厚氧化局限性,对不导电的样品,或对表面有较厚氧化局限性,对不导电的样品,或对表面有较厚氧化局限性,对不导电的样品,或对表面有较厚氧化层的导体在应用时,还需对样品进行镀金、镀碳层的导体在应用时,还需对样品进行镀

29、金、镀碳层的导体在应用时,还需对样品进行镀金、镀碳层的导体在应用时,还需对样品进行镀金、镀碳等处理。为了解决等处理。为了解决等处理。为了解决等处理。为了解决STMSTM的局限性,斯坦福大学的的局限性,斯坦福大学的的局限性,斯坦福大学的的局限性,斯坦福大学的BinningBinning等人在等人在等人在等人在19861986年发明了原子力显微镜,同年发明了原子力显微镜,同年发明了原子力显微镜,同年发明了原子力显微镜,同样能对高定向石黑(样能对高定向石黑(样能对高定向石黑(样能对高定向石黑(HOPGHOPG、导电)和高定向热、导电)和高定向热、导电)和高定向热、导电)和高定向热解氮化硼(解氮化硼(

30、解氮化硼(解氮化硼(HOPBNHOPBN、绝缘体)获得原子级分辨、绝缘体)获得原子级分辨、绝缘体)获得原子级分辨、绝缘体)获得原子级分辨率的图像。目前,除了率的图像。目前,除了率的图像。目前,除了率的图像。目前,除了STMSTM,AFMAFM是最重要是最重要是最重要是最重要SPMSPM技术。显然,技术。显然,技术。显然,技术。显然,AFMAFM比比比比STMSTM应用范围更广,应用范围更广,应用范围更广,应用范围更广,可以在空气、真空、渗液等条件下进行测定,从可以在空气、真空、渗液等条件下进行测定,从可以在空气、真空、渗液等条件下进行测定,从可以在空气、真空、渗液等条件下进行测定,从测试内容也

31、更加丰富,除了观察各种材料的表面测试内容也更加丰富,除了观察各种材料的表面测试内容也更加丰富,除了观察各种材料的表面测试内容也更加丰富,除了观察各种材料的表面结构,还可以研究材料硬度、强性、塑性、摩擦结构,还可以研究材料硬度、强性、塑性、摩擦结构,还可以研究材料硬度、强性、塑性、摩擦结构,还可以研究材料硬度、强性、塑性、摩擦等力学性能,同时还能进行原子、分子的操纵等力学性能,同时还能进行原子、分子的操纵等力学性能,同时还能进行原子、分子的操纵等力学性能,同时还能进行原子、分子的操纵(移动)、纳米尺寸的结构加工和超高密度信息(移动)、纳米尺寸的结构加工和超高密度信息(移动)、纳米尺寸的结构加工和

32、超高密度信息(移动)、纳米尺寸的结构加工和超高密度信息存储等。存储等。存储等。存储等。第34页/共56页6.3.1 AFM基本原理基本原理1 工作原理AFM利用一个对力敏感的传感利用一个对力敏感的传感器探测针尖与样品之间的相互器探测针尖与样品之间的相互作用力来实现表面成像作用力来实现表面成像将针尖固定在对微弱力极其敏将针尖固定在对微弱力极其敏感的弹性微悬臂上,当针尖与感的弹性微悬臂上,当针尖与样品表面接触时,针尖尖端原样品表面接触时,针尖尖端原子与样品表面之间存着极微弱子与样品表面之间存着极微弱的作用力的作用力;当样品靠近针尖时,两者之间当样品靠近针尖时,两者之间是范德华引力,当进一步接近是范

33、德华引力,当进一步接近时,变成范德华斥力,一般为时,变成范德华斥力,一般为10-8-10-6N。第35页/共56页图图1 1、原子与原子之间的交互作、原子与原子之间的交互作用力因为彼此之间的距离的不用力因为彼此之间的距离的不同而有所不同,其之间的能量同而有所不同,其之间的能量表示也会不同。表示也会不同。原子间范德华力第36页/共56页微悬臂会发生微小的弹性变形,针尖和样微悬臂会发生微小的弹性变形,针尖和样品之间的力品之间的力F,与微悬臂的变形,与微悬臂的变形Z之间服之间服从从Hooke定律,定律,Fh Z h微悬臂的力常数,通过测定微悬臂形变微悬臂的力常数,通过测定微悬臂形变量量Z,就可以得到

34、针尖与样品表面作用力,就可以得到针尖与样品表面作用力与距离的关系,与距离的关系,当针尖在样品表面进行扫描时,记录针尖当针尖在样品表面进行扫描时,记录针尖运动的轨迹,就可以得到样品表面形貌的运动的轨迹,就可以得到样品表面形貌的信息。信息。第37页/共56页STM:针尖与样品表面之间隧道电流的变:针尖与样品表面之间隧道电流的变化。化。AFM:针尖:针尖/样品之间作用力的变化。样品之间作用力的变化。由于由于AFM利用的是针尖利用的是针尖/样品表面作用力,样品表面作用力,所以不受样品导电性能的影响。所以不受样品导电性能的影响。AFM的检测方法类似于的检测方法类似于STM:恒力模式和:恒力模式和恒高模式

35、恒高模式。第38页/共56页第39页/共56页i i 隧道电流法隧道电流法隧道电流法隧道电流法检测原理同检测原理同检测原理同检测原理同STMSTM将微悬臂作为一个电极,传感器作为另一个电极,将微悬臂作为一个电极,传感器作为另一个电极,将微悬臂作为一个电极,传感器作为另一个电极,将微悬臂作为一个电极,传感器作为另一个电极,当两者之间距离变化时,隧道电流发生相应地变化,当两者之间距离变化时,隧道电流发生相应地变化,当两者之间距离变化时,隧道电流发生相应地变化,当两者之间距离变化时,隧道电流发生相应地变化,0.01nm0.01nm分辨分辨分辨分辨率通过反馈电路,保持隧道电路恒流率通过反馈电路,保持隧

36、道电路恒流率通过反馈电路,保持隧道电路恒流率通过反馈电路,保持隧道电路恒流/恒高。恒高。恒高。恒高。ii ii 电容检测法电容检测法电容检测法电容检测法平极电容器的电容值与极板间距离成反比,将微悬臂作为一个极平极电容器的电容值与极板间距离成反比,将微悬臂作为一个极平极电容器的电容值与极板间距离成反比,将微悬臂作为一个极平极电容器的电容值与极板间距离成反比,将微悬臂作为一个极板,传感器作为另一个极板,板,传感器作为另一个极板,板,传感器作为另一个极板,板,传感器作为另一个极板,z z方向的变化可以导致平极电容器电方向的变化可以导致平极电容器电方向的变化可以导致平极电容器电方向的变化可以导致平极电

37、容器电容值的改变,但这种方法的分辨率较低,约为容值的改变,但这种方法的分辨率较低,约为容值的改变,但这种方法的分辨率较低,约为容值的改变,但这种方法的分辨率较低,约为0.03nm0.03nm,比隧道电,比隧道电,比隧道电,比隧道电流法低。流法低。流法低。流法低。微悬臂形变的检测微悬臂形变的检测:第40页/共56页iii iii 光学检测法光学检测法光学检测法光学检测法光学检测法中常用干涉法和光束偏转法两种。光学干涉法的原理光学检测法中常用干涉法和光束偏转法两种。光学干涉法的原理光学检测法中常用干涉法和光束偏转法两种。光学干涉法的原理光学检测法中常用干涉法和光束偏转法两种。光学干涉法的原理类似于

38、迈克尔逊干涉仪,用两束正交的偏振光,分别探测微悬臂类似于迈克尔逊干涉仪,用两束正交的偏振光,分别探测微悬臂类似于迈克尔逊干涉仪,用两束正交的偏振光,分别探测微悬臂类似于迈克尔逊干涉仪,用两束正交的偏振光,分别探测微悬臂的固定端和针尖,经过微悬臂反射后,两束光发生干涉,干涉光的固定端和针尖,经过微悬臂反射后,两束光发生干涉,干涉光的固定端和针尖,经过微悬臂反射后,两束光发生干涉,干涉光的固定端和针尖,经过微悬臂反射后,两束光发生干涉,干涉光相位移动的大小与微悬臂形变量相位移动的大小与微悬臂形变量相位移动的大小与微悬臂形变量相位移动的大小与微悬臂形变量Z Z有关。在扫描过程中,通过反有关。在扫描过

39、程中,通过反有关。在扫描过程中,通过反有关。在扫描过程中,通过反馈电路调整相位移恒定,就可以得到表面形貌图像,分辩率在馈电路调整相位移恒定,就可以得到表面形貌图像,分辩率在馈电路调整相位移恒定,就可以得到表面形貌图像,分辩率在馈电路调整相位移恒定,就可以得到表面形貌图像,分辩率在z z方方方方向为向为向为向为0.001nm0.001nm。第41页/共56页6.3.2 AFM6.3.2 AFM仪器仪器光束偏转检测型光束偏转检测型AFMAFM仪器微悬臂形变检测系统上仪器微悬臂形变检测系统上节讲述。节讲述。a a 微悬臂、针尖微悬臂、针尖微悬臂对微悬臂对AFMAFM的分辨率影响大,其材料、设计、的分

40、辨率影响大,其材料、设计、形状、结构都是非常重要的,为了达到原子级的形状、结构都是非常重要的,为了达到原子级的分辨率,微悬臂的力常数必须非常小,即分辨率,微悬臂的力常数必须非常小,即nNnN级级的力的变化,必须能检测出来。常用氮化硅制作的力的变化,必须能检测出来。常用氮化硅制作成带有金字塔形针尖的成带有金字塔形针尖的V V字型微悬臂,如图字型微悬臂,如图b b 扫描系统,同扫描系统,同STMSTM,压电陶瓷扫描管,压电陶瓷扫描管x x、y y方向方向移动。移动。c c 检测系统:光束偏转型,激光器常用检测系统:光束偏转型,激光器常用670nm670nm0.003nm0.003nm极限分辨率极限

41、分辨率d d 反馈控制系统:保持光束偏转恒定,变化反馈控制系统:保持光束偏转恒定,变化z z方方向的距离,得到三维扫描成像。向的距离,得到三维扫描成像。第42页/共56页第43页/共56页第44页/共56页第45页/共56页第46页/共56页二氧化钛薄膜AFM照片 第47页/共56页a)未热处理薄膜样品b)热处理薄膜样品第48页/共56页6.3.3 AFM应用a 表面形貌测定AFM除了可以表征导体、半导体形貌之外,还可以直接用于绝缘体样品表面形貌的检测。除了可获得原子级分辨率的图像,还可以进行纳米颗粒、纳米薄膜、纳米管等材料的研究。第49页/共56页第50页/共56页b 纳米尺度的物理性能纳米

42、尺度的物理性能i 电学性能电学性能将针类表面镀上导电层,形成导电将针类表面镀上导电层,形成导电AFM,导电针尖作为一个可以在纳米尺度上扫描导电针尖作为一个可以在纳米尺度上扫描的微电极,利用的微电极,利用AFM的空间分辨能力对纳的空间分辨能力对纳米结构进行局域电学性能的研究。米结构进行局域电学性能的研究。例如:用导电例如:用导电AFM研究发现结构完整碳纳研究发现结构完整碳纳米管的电阻明显比结构有缺陷的碳纳米管米管的电阻明显比结构有缺陷的碳纳米管电阻小。电阻小。第51页/共56页ii 机械性能机械性能材料表面的摩擦、润滑是影响机械性能的材料表面的摩擦、润滑是影响机械性能的重要因素。例如:重要因素。

43、例如:LB膜的自组装膜膜的自组装膜(SAMs)都可以在物质表面沉积一层排列)都可以在物质表面沉积一层排列有序的致密的单分子膜,可以利用有序的致密的单分子膜,可以利用AFM横横向力模式研究向力模式研究LB膜和自组装膜的摩擦力,膜和自组装膜的摩擦力,发现自组装膜的润滑效果好于发现自组装膜的润滑效果好于LB膜。除此膜。除此之外,之外,AFM还可以用于微区硬度、弹性模还可以用于微区硬度、弹性模量等力学性能研究。量等力学性能研究。第52页/共56页c 生物材料生物材料一些生命过程,如一些生命过程,如DNA复制,蛋白质合成、复制,蛋白质合成、神经递质的传递等过程都由分子间作用力神经递质的传递等过程都由分子

44、间作用力控制,控制,AFM的高灵敏度成为探测这些微弱的高灵敏度成为探测这些微弱作用力的有力工具。可以分析生物分子的作用力的有力工具。可以分析生物分子的分子内、分子间作用力,还可以用分子内、分子间作用力,还可以用AFM对对DNA等大分子进行切割、弯曲、改变空间等大分子进行切割、弯曲、改变空间构型等操纵。构型等操纵。第53页/共56页d 纳米结构加工纳米结构加工用用AFM技术能搬运分子、原子,构建纳米技术能搬运分子、原子,构建纳米结构器件,可以用结构器件,可以用AFM在某些金属表在某些金属表AFM这一性质,在薄膜表面形成纳米级的点阵,这一性质,在薄膜表面形成纳米级的点阵,以实现超密度信息存储等等。以实现超密度信息存储等等。第54页/共56页思考题:1SPM技术有什么特点?2STM和AFM的应用范围有什么不同?3什么是隧道电流。4STM和AFM的工作原理。5如何解释STM图像。6从AFM的力距离曲线中能得到什么信息?第55页/共56页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁