《测量误差基本概念精选PPT.ppt》由会员分享,可在线阅读,更多相关《测量误差基本概念精选PPT.ppt(78页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、测量误差基本概念第1页,此课件共78页哦第一节第一节 误差及其产生的原因误差及其产生的原因1、误差公理、误差公理2、测量误差基本术语、测量误差基本术语3、系统误差和随机误差、系统误差和随机误差第2页,此课件共78页哦第一节第一节 误差及其产生的原因误差及其产生的原因 一、误差公理一、误差公理 一切测量结果都有误差,误差存在于检定与一切测量结果都有误差,误差存在于检定与测试的全过程之中。测试的全过程之中。如果我们在给出一项测量结果的时候,没有指如果我们在给出一项测量结果的时候,没有指出其误差,那这个测量结果将没有实际意义。出其误差,那这个测量结果将没有实际意义。第3页,此课件共78页哦 二、测量
2、误差定义及表达二、测量误差定义及表达 测量误差:测量误差:测量结果与被测量的真值之间的测量结果与被测量的真值之间的差。差。即测量误差即测量误差=测量结果测量结果-被测量的真值被测量的真值 真值:真值:被测量的真值是指一个量在被观测瞬被测量的真值是指一个量在被观测瞬间的条件下,被测的量本身所具有的真实大小,间的条件下,被测的量本身所具有的真实大小,真值是客观存在的,测量也不可能完全没有误差,真值是客观存在的,测量也不可能完全没有误差,因此也就无法求得瞬息变化的被测的量的真值。因此也就无法求得瞬息变化的被测的量的真值。第4页,此课件共78页哦 真值真值 所以量的真值仅是一个所以量的真值仅是一个理想
3、的概念理想的概念,在实际运用中的真值是指以下几种情况:在实际运用中的真值是指以下几种情况:理论真值、理论真值、约定真值。约定真值。第5页,此课件共78页哦 理论真值理论真值:由定义和公式给出由定义和公式给出 如平面三角形内角之和为如平面三角形内角之和为180,一整圆的圆周角为一整圆的圆周角为360等。等。第6页,此课件共78页哦 约定真值约定真值:约定采用的值,有:约定采用的值,有:1)被测量的实际值。)被测量的实际值。2)已修正过的算术平均值。)已修正过的算术平均值。3)计量标准所复现的量值)计量标准所复现的量值 4)计量学约定真值:)计量学约定真值:国际计量大会定义的各物理量的单位国际计量
4、大会定义的各物理量的单位量值。如米的长度定义为光在真空中,在量值。如米的长度定义为光在真空中,在1/299792458秒的时间间隔内所经路径的秒的时间间隔内所经路径的长度。长度。第7页,此课件共78页哦(一)绝对误差(一)绝对误差 1、定义:所获得的结果、定义:所获得的结果减去减去其真值;其真值;=-0 绝对误差绝对误差 测量结果测量结果 0 真值(真值(理论真值、约定真值、实际值理论真值、约定真值、实际值)第8页,此课件共78页哦 2、举例、举例 举例举例1 标称值为标称值为10g的二等砝码,经过检的二等砝码,经过检定其实际值为定其实际值为10.003g,该砝码的标称值的,该砝码的标称值的绝
5、对误差为多少绝对误差为多少?解:解:=-0 =10(标称值)(标称值)-10.003(实际值)(实际值)=-0.003g=-3mg(标称值的绝对误差标称值的绝对误差)第9页,此课件共78页哦 举例2 用2.5级的压力表测量得出某压力值为1.60MPa,用另一只0.4级精密压力表测得压力值为1.593MPa,求该压力值的绝对误差。解:=-0 =1.60-1.593 =+0.093MPa(绝对误差)第10页,此课件共78页哦 3、特点:从以上举例及说明中可见:(1)绝对误差有单位,其单位与测得结果相同;(2)绝对误差有大小(值)和符号(),表示测量结果偏离真值的程度。(3)绝对误差不是对某一被测量
6、而言,而是对该量的某一给出值来讲。如:说砝码的误差为+0.003g(错误);而说10g砝码的误差(或示值误差)为+0 003g(正确)。第11页,此课件共78页哦 4、其他相关概念、其他相关概念 (1)误差绝对值误差绝对值()误差绝对值误差绝对值不考虑正、负号的误差值。不考虑正、负号的误差值。误差绝对值不等于绝对误差,它与绝对误差误差绝对值不等于绝对误差,它与绝对误差是两个不同的概念,绝对误差有符号是两个不同的概念,绝对误差有符号(),而,而误差绝对值是误差的模。误差绝对值是误差的模。如在例如在例1中,绝对误差为中,绝对误差为=-3mg,误差绝,误差绝对值为对值为I I=3mg。第12页,此课
7、件共78页哦 (2)偏差(d)偏差偏差某值减去其标称值。即某值与其参某值减去其标称值。即某值与其参考值之差。某值可以是计量器具的测得值、考值之差。某值可以是计量器具的测得值、实际值等。实际值等。如:用户需要一个准确值为如:用户需要一个准确值为lkg的砝码,并的砝码,并将此应有的值标示在砝码上,而工厂加工时将此应有的值标示在砝码上,而工厂加工时由于诸多因素的影响,所得的实际值为由于诸多因素的影响,所得的实际值为1.002kg,此时的偏差为,此时的偏差为+0.002kg。为了描述这个差异,引入为了描述这个差异,引入“偏差偏差”的概念:的概念:偏差偏差=实际值实际值-标称值标称值 =1.002-1.
8、000=+0.002kg 第13页,此课件共78页哦 由此可见:由此可见:(1)偏差与绝对误差的绝对值相等而符号偏差与绝对误差的绝对值相等而符号相反。相反。(2)偏差、误差各指的对象不同。所以在分偏差、误差各指的对象不同。所以在分析误差时,首先要分清所研究的对象是什么,析误差时,首先要分清所研究的对象是什么,即要表示的是哪个量值的误差。即要表示的是哪个量值的误差。第14页,此课件共78页哦 (二二)相对误差:测量误差除以被测量的真值。相对误差:测量误差除以被测量的真值。对于同种量,如果给出量值相同,用绝对误差对于同种量,如果给出量值相同,用绝对误差就足以评定其准确度的高低。就足以评定其准确度的
9、高低。如两个标准值均为如两个标准值均为l00g的砝码,其示值误差的砝码,其示值误差一个是一个是+0.001g,另一个是,另一个是+0.002g,显然,显然,前者绝对误差小,准确度高;后者绝对误差大,前者绝对误差小,准确度高;后者绝对误差大,准确度低。准确度低。第15页,此课件共78页哦 (二二)相对误差:测量误差除以被测量的真值。相对误差:测量误差除以被测量的真值。对于不同给出量值,用绝对误差难以比较对于不同给出量值,用绝对误差难以比较它们准确度的高低。它们准确度的高低。如两个砝码,其示值误如两个砝码,其示值误差都是差都是+0.1g,若其标称值分别为,若其标称值分别为100g,200g,则尽管
10、示值误差都是,则尽管示值误差都是+0.1g,但对,但对100g砝码砝码而言,该绝对误差占给出值的而言,该绝对误差占给出值的+0.l;对;对200g砝码而言,仅占了砝码而言,仅占了+0.05。很明显,后很明显,后者的准确度高。者的准确度高。因此,为反映其测量品质的优劣,有必要引因此,为反映其测量品质的优劣,有必要引入误差率即相对误差的概念。入误差率即相对误差的概念。第16页,此课件共78页哦 1、定义、定义 相对误差相对误差(r):绝对误差与被测量的:绝对误差与被测量的约定约定真值之比即真值之比即:r=/0即即/(14-2)式中,式中,0或或不为零,且不为零,且与与0(或或)的单位的单位相同,故
11、相对误差相同,故相对误差,呈无量纲形式。,呈无量纲形式。相对误差一般用百分数相对误差一般用百分数()表示。表示。第17页,此课件共78页哦 例例3 有一标称范围为有一标称范围为0300V的电压表,在的电压表,在示值为示值为100V处,其实际值为处,其实际值为100.50V,则该电压,则该电压表示值表示值100V处的相对误差为:处的相对误差为:r=(100.00v-100.50v)/100.50V 100%(100.00v-100.50v)/100V 100%=0.5第18页,此课件共78页哦 2、特点、特点 相对误差与绝对误差相比,有如下特点:相对误差与绝对误差相比,有如下特点:(1)相对误差
12、表示的是给出值所含有的误相对误差表示的是给出值所含有的误差率;绝对误差表示的是给出值减去真值差率;绝对误差表示的是给出值减去真值所得的量值;所得的量值;(2)相对误差只有大小和正负号,而无相对误差只有大小和正负号,而无计量单位计量单位(无量纲量无量纲量);而绝对误差不仅有;而绝对误差不仅有大小、正负号,还有计量单位。大小、正负号,还有计量单位。第19页,此课件共78页哦 三、三、测量测量误差的来源和分类误差的来源和分类 (一一)测量误差的来源测量误差的来源 任何检定、测试都是在某一环境条件下,由测任何检定、测试都是在某一环境条件下,由测量人员使用符合要求的计量器具和测量方法来完量人员使用符合要
13、求的计量器具和测量方法来完成的。然而,由于测量方法、测量器具、测量人成的。然而,由于测量方法、测量器具、测量人员、测量环境等因素的不同造成误差因此,误差员、测量环境等因素的不同造成误差因此,误差的来源,主要根据引起误差的原因来分析。的来源,主要根据引起误差的原因来分析。第20页,此课件共78页哦 (二)测量误差的分类:系统误差和随机误差(二)测量误差的分类:系统误差和随机误差 1、系统误差系统误差 系系统统误误差差是是由由某某种种固固定定的的原原因因引引起起的的误误差差。系系统统误误差差对对分分析析结结果果的的影影响响比比较较固固定定,使使测测定定结结果果系系统统偏偏高高或或系系统统偏偏低低,
14、当当重重复复测测定定时时重重复复出现。分为:出现。分为:(1 1)方法误差方法误差 (2 2)设备误差设备误差 (3 3)附件误差附件误差 (4 4)人员误差人员误差 (5)量值传递误差量值传递误差第21页,此课件共78页哦 1、系统误差系统误差 (1 1)方方法法误误差差:方方法法误误差差是是由由于于分分析析方方法法本本身不够完善而引起的。身不够完善而引起的。(2 2)设备误差设备误差(仪器误差仪器误差):仪器误差是由于:仪器误差是由于所用仪器不够精确所引起的误差。所用仪器不够精确所引起的误差。(3 3)附件误差附件误差(试剂误差试剂误差):试剂误差是由:试剂误差是由于测定时所用试剂或蒸馏水
15、不纯所引起的误差。于测定时所用试剂或蒸馏水不纯所引起的误差。(4 4)人员误差人员误差(操作误差操作误差):操作误差是由:操作误差是由于分析操作人员所掌握的分析操作,与正确的分于分析操作人员所掌握的分析操作,与正确的分析操作有差别所引起的。析操作有差别所引起的。(5)量值传递误差:量值传递误差:标准传递时引起的误差。标准传递时引起的误差。第22页,此课件共78页哦 2、随机误差、随机误差 随随机机误误差差也也称称偶偶然然误误差差,它它是是由由某某些些无无法法控控制制和和无无法法避避免免的的偶偶然然因因素素造造成成的的。由由于于随随机机误误差差是是由由一一些些不不确确定定的的偶偶然然因因素素造造
16、成成的的,其其大大小小和和正正负负都都是是不不固固定定的的,因因此此无无法法测测定定,也不可能加以校正。也不可能加以校正。第23页,此课件共78页哦 随机误差的分布也存在一定规律:随机误差的分布也存在一定规律:(1 1)绝绝对对值值相相等等的的正正、负负误误差差出出现现的的机机会相等;会相等;(2 2)小小误误差差出出现现的的机机会会多多,大大误误差差出出现现的的机机会会少少,绝绝对对值值特特别别大大的的正正、负负误误差差出现的机会非常小。出现的机会非常小。第24页,此课件共78页哦第二节第二节 误差的表示方法误差的表示方法一、准确度与误差一、准确度与误差二、精密度与偏差二、精密度与偏差三、准
17、确度与精密度的关系三、准确度与精密度的关系第25页,此课件共78页哦 一、准确度与误差一、准确度与误差 分析结果的分析结果的准确度准确度是指实际测定结果与真是指实际测定结果与真实值的接近程度。准确度的高低用误差来衡量,实值的接近程度。准确度的高低用误差来衡量,误差又可分为绝对误差和相对误差。误差又可分为绝对误差和相对误差。绝对误差定义为:绝对误差定义为:相对误差定义为:相对误差定义为:第26页,此课件共78页哦 相相对对误误差差能能反反映映出出误误差差在在真真实实值值中中所所占占比比例例,这这对对于于比比较较在在各各种种情情况况下下测定结果的准确度更为方便。测定结果的准确度更为方便。绝绝对对误
18、误差差和和相相对对误误差差都都有有正正负负,正正值值表表示示测测定定值值比比真真实实值值偏偏高高,负负值值表表示测定值比真实值偏低。示测定值比真实值偏低。第27页,此课件共78页哦 二、精密度与偏差二、精密度与偏差 精密度精密度是几次平行测定结果之间相互接近的是几次平行测定结果之间相互接近的程度,它反映了测定结果再现性的好坏,其大小程度,它反映了测定结果再现性的好坏,其大小决定于随机误差的大小。精密度可以用偏差、平决定于随机误差的大小。精密度可以用偏差、平均偏差或相对偏差来衡量。均偏差或相对偏差来衡量。偏差定义为:偏差定义为:偏差越大,精密度就越低,测定结果的再现偏差越大,精密度就越低,测定结
19、果的再现性就越差。性就越差。第28页,此课件共78页哦 平均偏差定义为:平均偏差定义为:相对平均偏差定义:相对平均偏差定义:利用平均偏差或相对平均偏差表示精密度利用平均偏差或相对平均偏差表示精密度 比较简单,但大偏差得不到应有的反映。比较简单,但大偏差得不到应有的反映。第29页,此课件共78页哦例如,下列两组测定结果:例如,下列两组测定结果:1:+0.11 0.72 +0.24 +0.51 0.14 0.00 +0.30 0.21 N18 d10.28 2:+0.18 +0.26 0.25 0.37 +0.32 0.28 +0.31 0.27 N2=8 d2=0.28 虽然两组测定结果的平均偏
20、差相同,但是实际虽然两组测定结果的平均偏差相同,但是实际 上第一组的数值中出现三个大偏差,测定结果上第一组的数值中出现三个大偏差,测定结果 的精密度较差。的精密度较差。第30页,此课件共78页哦 用数理统计方法处理数据时,常用标准偏用数理统计方法处理数据时,常用标准偏 差和相对标准偏差来衡量测定结果的精密度。差和相对标准偏差来衡量测定结果的精密度。当测量次数当测量次数 N 20 时,单次测量的标准偏差定时,单次测量的标准偏差定 义为:义为:相对标准偏差定义为相对标准偏差定义为:例题第31页,此课件共78页哦 计算标准偏差和相对标准偏差时把单次测定值的偏差平计算标准偏差和相对标准偏差时把单次测定
21、值的偏差平方后再求和,不仅能避免单次测定偏差相加时正负抵消,更重方后再求和,不仅能避免单次测定偏差相加时正负抵消,更重要的是大偏差能显著地反映出来。标准偏差和相对标准偏差能要的是大偏差能显著地反映出来。标准偏差和相对标准偏差能更好地反映出一组平行测定数据的精密度。更好地反映出一组平行测定数据的精密度。例:例:用碘量法测定某铜合金中铜的质量分数如下:用碘量法测定某铜合金中铜的质量分数如下:第一组第一组:10.3,9.8,9.6,10.2,10.1,10.4,10.0,9.7;第二组第二组:10.0,10.1,9.3,10.2,9.9,9.8,10.5,9.9。比较两组数据的精密度,分别以平均偏差
22、和标准偏差表示。比较两组数据的精密度,分别以平均偏差和标准偏差表示。第35页,此课件共78页哦 三、准确度与精密度的关系三、准确度与精密度的关系 准确度准确度是指测定值与真实值的符合程度,是指测定值与真实值的符合程度,用误差来度量。而误差的大小与系统误差和用误差来度量。而误差的大小与系统误差和随机误差有关,反映了测定结果的正确性。随机误差有关,反映了测定结果的正确性。精密度是指一系列平行测定值之间相符合精密度是指一系列平行测定值之间相符合的程度,用偏差来量度。偏差的大小不能反的程度,用偏差来量度。偏差的大小不能反映出测定值与真实值的相符合程度,只能反映出测定值与真实值的相符合程度,只能反映测定
23、结果的重现性。准确度与精密度的关映测定结果的重现性。准确度与精密度的关系可利用下图进行说明。系可利用下图进行说明。第38页,此课件共78页哦准确度与精密度的关系示意图第39页,此课件共78页哦 高精密度是获得高准确度的必要条件,高精密度是获得高准确度的必要条件,准确准确度高一定要求精密度高。度高一定要求精密度高。但是,精密度高不一定能保证准确度也高,但是,精密度高不一定能保证准确度也高,精密度高只反映了随机误差小,并不能保证精密度高只反映了随机误差小,并不能保证消除了系统误差。消除了系统误差。若精密度低,说明测定结果不可靠,当然其若精密度低,说明测定结果不可靠,当然其准确度也就不可能高准确度也
24、就不可能高。第40页,此课件共78页哦 第三节第三节 提高分析结果准确度的提高分析结果准确度的方法方法一、选择适当的分析方法二、减小测定误差三、减小系统误差四、减小随机误差 第41页,此课件共78页哦 一、选择适当的分析方法一、选择适当的分析方法 各种分析方法的准确度和灵敏度是不相同各种分析方法的准确度和灵敏度是不相同的,必须根据被测组分的质量分数来选择合适的,必须根据被测组分的质量分数来选择合适的分析方法。滴定分析法的准确度较高,但灵的分析方法。滴定分析法的准确度较高,但灵敏度较低,适用于常量组分的测定;而吸光光敏度较低,适用于常量组分的测定;而吸光光度法等仪器分析方法灵敏度较高,但准确度较
25、度法等仪器分析方法灵敏度较高,但准确度较低,适用于微量组分的测定。低,适用于微量组分的测定。第42页,此课件共78页哦 二、减小测定误差二、减小测定误差 为了保证分析结果的准确度,必须尽量减小为了保证分析结果的准确度,必须尽量减小测定误差。在用分析天平称量时,应设法减小称测定误差。在用分析天平称量时,应设法减小称量误差。为了把称量的相对误差控制在量误差。为了把称量的相对误差控制在0.1以以内,试样质量必须在内,试样质量必须在0.2 g 以上。在滴定分析中,以上。在滴定分析中,为使测定的相对误差不超过为使测定的相对误差不超过0.1,消耗滴定剂消耗滴定剂的体积必须在的体积必须在 20 mL 以上。
26、以上。不同的分析方法要求有不同的准确度,测定不同的分析方法要求有不同的准确度,测定时应根据具体要求控制测定误差。时应根据具体要求控制测定误差。第43页,此课件共78页哦 三、减小系统误差三、减小系统误差 (1 1)对照试验对照试验:常用已知分析结果的:常用已知分析结果的标准试样标准试样,与被测试样一起进行对照试验,与被测试样一起进行对照试验,或用公认可靠的分析方法与所采用的分析或用公认可靠的分析方法与所采用的分析方法进行对照试验。方法进行对照试验。(2 2)空空白白试试验验:在在不不加加试试样样的的情情况况下下,按按照照试试样样分分析析同同样样的的操操作作步步骤骤和和条条件件进进行行试试验验,
27、所所得得到到的的结结果果称称为为空空白白值值。从从试试样样的的分分析析结结果果中中扣扣除除空空白白值值,就就可可得得到到比比较较可靠的分析结果。可靠的分析结果。采用下列方法来检验和消除系统误差:第44页,此课件共78页哦 (3 3)仪器校准:根据分析方法所要求的允)仪器校准:根据分析方法所要求的允 许误差,对测定仪器许误差,对测定仪器(如砝码、滴定管、移液如砝码、滴定管、移液 管、容量瓶等管、容量瓶等)进行校准,以消除由仪器不进行校准,以消除由仪器不准准 确带来的误差。确带来的误差。(4 4)方法校正:某些分析方法造成的系统)方法校正:某些分析方法造成的系统 误差,可用适当的方法进行校正。误差
28、,可用适当的方法进行校正。第45页,此课件共78页哦 四、减小随机误差四、减小随机误差 增加平行测定的次数,可以减小随机误差。增加平行测定的次数,可以减小随机误差。必须注意的是,过多的增加平行测定次数,收效必须注意的是,过多的增加平行测定次数,收效并不大,却消耗了更多的试剂和时间。在一般化并不大,却消耗了更多的试剂和时间。在一般化学分析中,平行测定学分析中,平行测定 4 6 次已经足够,学生的次已经足够,学生的验证性教学实验,平行测定验证性教学实验,平行测定 2 3 次即可次即可。第46页,此课件共78页哦第四节第四节 不确定度的基本概念不确定度的基本概念1、不确定度、不确定度2、测量不确定度
29、的来源、测量不确定度的来源3、不确定度与测量误差的区别、不确定度与测量误差的区别第47页,此课件共78页哦第四节第四节 不确定度的基本概念不确定度的基本概念 1、不确定度:、不确定度:表征合理地赋予被测量之表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。值的分散性,与测量结果相联系的参数。称称为测量的不确定度。为测量的不确定度。由于测量条件的不完善及人们的认识不足使被由于测量条件的不完善及人们的认识不足使被测量的值不能被确切地知道,测量值以一定的概测量的值不能被确切地知道,测量值以一定的概率分布在某个区域内。率分布在某个区域内。所以说表征被测量分散性的参数就是测量不确所以说表征被测量
30、分散性的参数就是测量不确定度。定度。第48页,此课件共78页哦第四节第四节 不确定度的基本概念不确定度的基本概念 不确定度与测量误差是不一样的,测量不确不确定度与测量误差是不一样的,测量不确定度是表明赋予被测量之值的分散性,它与人定度是表明赋予被测量之值的分散性,它与人们对被测量的认识程度有关,是通过分析和评们对被测量的认识程度有关,是通过分析和评定得到的一个区间。定得到的一个区间。而测量误差则是表明测量结果偏离真值的而测量误差则是表明测量结果偏离真值的差值,它客观存在但人们无法准确得到。差值,它客观存在但人们无法准确得到。第49页,此课件共78页哦 2、测量不确定度可能来源:测量不确定度可能
31、来源:1)对被测量的定义不完整或不完善;)对被测量的定义不完整或不完善;2)实现被测量的定义的方法不理想;)实现被测量的定义的方法不理想;3)取样的代表性不够,即被测量的样本不能)取样的代表性不够,即被测量的样本不能定义的被测量;定义的被测量;4)对被测量过程受环境影响的认识不周全,)对被测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善;或对环境条件的测量与控制不完善;5)对模拟仪器的读数存在人为偏差;)对模拟仪器的读数存在人为偏差;6)测量仪器的分辨力或鉴别力不够;)测量仪器的分辨力或鉴别力不够;7)赋予计量标准的值和标准物质的值不准;)赋予计量标准的值和标准物质的值不准;8)
32、引用于数据计算的常量和其他参量不准;)引用于数据计算的常量和其他参量不准;9)在表面上看来完全相同的条件下,被测量)在表面上看来完全相同的条件下,被测量重复观测值的变化。重复观测值的变化。第50页,此课件共78页哦 由此可见,不确定度一般来源于随机性和由此可见,不确定度一般来源于随机性和模糊性,前者归因于条件不充分,后者归因模糊性,前者归因于条件不充分,后者归因于事物本身概念不明确。于事物本身概念不明确。第51页,此课件共78页哦 3、不确定度与测量误差的区别不确定度与测量误差的区别 1)测量误差是指测量结果减去的真值,是)测量误差是指测量结果减去的真值,是一个有确定正或负号的量值,而不确定度
33、则一个有确定正或负号的量值,而不确定度则是一个无符号的参数,用标准差或其倍数,是一个无符号的参数,用标准差或其倍数,或置信区间的半宽表示。或置信区间的半宽表示。2)误差表明测量结果偏离真值的程度,而)误差表明测量结果偏离真值的程度,而不确定度表明测量值的分散性。不确定度表明测量值的分散性。第52页,此课件共78页哦 3、不确定度与测量误差的区别不确定度与测量误差的区别 3)误差是客观存在的,不以人的认识程度而)误差是客观存在的,不以人的认识程度而异;而不确定度与人们对被测量影响量及测量过异;而不确定度与人们对被测量影响量及测量过程的认识有关。程的认识有关。4)由于真值不可知,则误差往往不能准确
34、得出,)由于真值不可知,则误差往往不能准确得出,但在用约定真值代替真值时,可得其估计值;而但在用约定真值代替真值时,可得其估计值;而不确定度可由人们根据实验、资料、经验等信息不确定度可由人们根据实验、资料、经验等信息进行评定,评定方法有进行评定,评定方法有A、B两类。两类。第53页,此课件共78页哦 3、不确定度与测量误差的区别不确定度与测量误差的区别 5)误差按其性质可分为随机和系统误差两类,)误差按其性质可分为随机和系统误差两类,按定义,这两类误差均为无穷多次测量情况下的按定义,这两类误差均为无穷多次测量情况下的理想值;不确定度在评定时,可分为由随机效应理想值;不确定度在评定时,可分为由随
35、机效应或系统效应引入的不确定度分量。或系统效应引入的不确定度分量。6)已知系统误差的估计值可对测量结果进行)已知系统误差的估计值可对测量结果进行修正,得出修正的测量结果;而不确定度不能对修正,得出修正的测量结果;而不确定度不能对测量结果进行修正,在已作修正的测量结果中,测量结果进行修正,在已作修正的测量结果中,应考虑修正不完善所引入的不确定度。应考虑修正不完善所引入的不确定度。第54页,此课件共78页哦第五节第五节 有效数字及数字修约规则有效数字及数字修约规则一、有效数字一、有效数字二、有效数字修约方法二、有效数字修约方法三、有效数字的运算规则三、有效数字的运算规则第55页,此课件共78页哦
36、一、有效数字一、有效数字 有有效效数数字字就就是是指指在在分分析析工工作作中中实实际际上上能能测测定定到到的的数数字字,就就是是包包括括最最后后一一位位估估计计的的不不确确定定的的数数字字。可可能能有有绝绝对对误误差差,而而其其余余各位数字都是确定的。各位数字都是确定的。第56页,此课件共78页哦 一、有效数字一、有效数字 一个近似数据的有效位数是该数中有效数一个近似数据的有效位数是该数中有效数字的个数,是指字的个数,是指从该数左方第一个非零数字从该数左方第一个非零数字算起到最末一个数字(包括零)的个数,叫算起到最末一个数字(包括零)的个数,叫做做有效数字。有效数字。有效数字有效数字不取决于小
37、数点的位置。例如不取决于小数点的位置。例如 0.005有有1位有效数字。位有效数字。0.0050有有2位有效数字。位有效数字。第57页,此课件共78页哦二、数字修约规则二、数字修约规则(GB/T 8170-2008)在进行具体的数字在进行具体的数字运算运算前,按照一定的规前,按照一定的规则确定一致的位数,然后舍去某些数字后面则确定一致的位数,然后舍去某些数字后面多余的多余的尾数尾数的过程被称为数字修约,指导的过程被称为数字修约,指导数字修约的具体规则被称为数字修约规则。数字修约的具体规则被称为数字修约规则。工作中测定和计算得到的各种数值,修约工作中测定和计算得到的各种数值,修约时应按照国家标准
38、时应按照国家标准数值修约规则数值修约规则进行。进行。第58页,此课件共78页哦 数字修约时应首先确定数字修约时应首先确定“修约间隔修约间隔”、“有效位数有效位数”,即保留位数。一经确定,即保留位数。一经确定,修约值必须是修约值必须是“修约间隔修约间隔”的整数倍,保的整数倍,保留至留至“有效位数有效位数”。然后指定表达方式,即选择根据然后指定表达方式,即选择根据“修约间修约间隔隔”保留到指定位数,或将数值修约成保留到指定位数,或将数值修约成n位位“有效位数有效位数”。第59页,此课件共78页哦 术语术语 修约间隔修约间隔 系确定修约保留位数的一种方式。修约间系确定修约保留位数的一种方式。修约间隔
39、的数值一经确定,修约值即应为该数值的隔的数值一经确定,修约值即应为该数值的整数倍。整数倍。例例1:如指定修约间隔为:如指定修约间隔为0.1,修约值即应,修约值即应在在0.1的整数倍中选取,相当于将数值修约到的整数倍中选取,相当于将数值修约到1位位小数。小数。例例2:如指定修约间隔为:如指定修约间隔为100,修约值即应,修约值即应在在100的整数倍中选取,相当于将数值修约到的整数倍中选取,相当于将数值修约到“百百”数位。数位。第60页,此课件共78页哦 有效位数有效位数 从从最左位起第一个非零最左位起第一个非零数字向右数得到的位数字向右数得到的位数减去数减去无效零无效零(即仅为定位用的零)的个数
40、;(即仅为定位用的零)的个数;例例1:整数:整数,35000,若为三位有效数若为三位有效数,则有则有两个无效零两个无效零,应写为应写为350102;若为两位有效数,则有三个无效零若为两位有效数,则有三个无效零,35000应写为应写为35 103。第61页,此课件共78页哦 对其他十进位数,从对其他十进位数,从非零非零数字数字最左位最左位向右向右数而得到的位数,就是有效位数数而得到的位数,就是有效位数(没有无效没有无效零零)。例例2:小数,:小数,3.2、0.32、0.032、0.0032均为两位有效位数;均为两位有效位数;0.0320为三位有效位为三位有效位数。数。例例3:12.490为五位有
41、效位数;为五位有效位数;10.00为为四位有效位数。四位有效位数。第62页,此课件共78页哦 数值修约规则数值修约规则 “1”间隔修约规则间隔修约规则 拟修约数值按拟修约数值按1间隔进行修约时的规则如下间隔进行修约时的规则如下:(1)拟舍弃的数字的最左一位数字小于拟舍弃的数字的最左一位数字小于5时时,则则舍去舍去,即保留的各位数字不变即保留的各位数字不变;例如:例如:修约修约3.1414999到小数点后第三位到小数点后第三位(修约间隔为(修约间隔为0.001或保留或保留4位有效数字位有效数字),),则拟舍弃的数字则拟舍弃的数字“4999”最左面的数字是最左面的数字是4小于小于5,则舍去,保留则
42、舍去,保留3.141。3.14149993.141。第63页,此课件共78页哦 (2)拟舍弃的数字的最左一位数字大于)拟舍弃的数字的最左一位数字大于5时时,或是等于或是等于5,且其后跟有并非全部为,且其后跟有并非全部为0的数字的数字时时,则进则进1,即保留的末位数字加即保留的末位数字加1;例例1:修约:修约12689,修约间隔为修约间隔为100,拟舍拟舍弃的数字弃的数字“89”最左面的数字是最左面的数字是8大于大于5,则进则进1。则为则为 1268912700。保留三位有效数字保留三位有效数字:126891.27104 第64页,此课件共78页哦 例例2:修约:修约3.1425001,修约到小
43、数点后,修约到小数点后第三位(修约间隔为第三位(修约间隔为0.001或保留或保留4位有效位有效数字)。数字)。3.1415001,拟舍弃的数字,拟舍弃的数字“5001”最最左面的数字是左面的数字是5,且其后跟有并非全部为,且其后跟有并非全部为0的数字时的数字时,则进则进1,即保留的末位数字加即保留的末位数字加1;3.14150013.142第65页,此课件共78页哦 (3)拟舍弃的数字的最左一位数字为拟舍弃的数字的最左一位数字为5 而其后无数字或皆为而其后无数字或皆为0时,且保留的末时,且保留的末位数字为奇数位数字为奇数(1,3,5,7,9),则进;,则进;为偶数为偶数(0,2,4,6,8),
44、则舍去。这一规则则舍去。这一规则即即“4舍舍6入入5 不定,不定,“5前奇进偶舍去前奇进偶舍去”法则法则”。第66页,此课件共78页哦 例:修约例:修约0.00945,修约间隔为,修约间隔为0.0001。拟舍弃的数字为拟舍弃的数字为“5”最左面的数字是最左面的数字是5,而,而其后无数字或皆为其后无数字或皆为0时时,而保留的末位数字为而保留的末位数字为偶数偶数4,根据遇,根据遇5“5前奇进偶舍去前奇进偶舍去”规则,规则,5舍去。舍去。即,修约间隔为即,修约间隔为0.0001:0.009450.0094(或(或9410-4)(因为)(因为5后面没有数后面没有数字)。字)。第67页,此课件共78页哦
45、 例例1 将下列数修约到小数点后第三位将下列数修约到小数点后第三位(修约间隔为(修约间隔为0.001或保留或保留4位有效数字)。位有效数字)。3.1415001 3.142(5001,5前面为奇数,前面为奇数,5进位)进位)3.1414999 3.141(4999,4舍去)舍去)3.1415 3.142(5前面为奇数,前面为奇数,5进位)进位)第68页,此课件共78页哦 3.1425 3.142(5前面为偶数,前面为偶数,5舍)舍)3.141329 3.141(3小于小于5,3舍)舍)3.1405000001 3.141(5000001,5虽然前面是偶数虽然前面是偶数0,但后面有非,但后面有非
46、0的数字的数字,故,故5进位进位)。)。所以,遇所以,遇5先看先看5前奇偶前奇偶,再看再看5后非后非0 第69页,此课件共78页哦 3.1 拟舍弃数字的拟舍弃数字的最左一位最左一位数字小于数字小于5时,则时,则舍去,(舍去,(4舍去)即保留的各位数字不变。舍去)即保留的各位数字不变。例例1:将:将12.1498修约到一位小数,得修约到一位小数,得12.1。例例2:将:将12.1498修约成两位有效位数,得修约成两位有效位数,得12。3.2 拟舍弃数字的最左一位数字大于拟舍弃数字的最左一位数字大于5;或;或者是者是5,而其后跟有并非全部为,而其后跟有并非全部为0的数字时,的数字时,则进一,即保留
47、的末位数字加则进一,即保留的末位数字加1。3 进舍规则进舍规则第70页,此课件共78页哦 例例1:将:将1268修约到修约到“百百”数位,得数位,得13102(特定时可写为(特定时可写为1300)。)。例例2:将:将1268修约成三位有效位数,得修约成三位有效位数,得 127 10(特定时可写为(特定时可写为 1270)。)。例例3:将:将10.502修约到个数位,得修约到个数位,得11。注:本标准示例中,注:本标准示例中,“特定时特定时”的涵义的涵义系指修约间隔或有效位数明确时。系指修约间隔或有效位数明确时。第71页,此课件共78页哦 3.3 拟舍弃数字的最左一位数字为拟舍弃数字的最左一位数
48、字为5,而,而5右面无数字或皆为右面无数字或皆为0时,或若所保留的末位数时,或若所保留的末位数字为偶数(字为偶数(2,4,6,8,0)则舍弃。)则舍弃。若所保留的末位数字为奇数(若所保留的末位数字为奇数(1,3,5,7,9)则)则进一。进一。例例1:修约间隔为:修约间隔为0.1 拟修约数值拟修约数值 修约值修约值 1.0501.0(5前为偶数前为偶数)0.3500.4(5前为奇数前为奇数)第72页,此课件共78页哦 例例2:修约间隔为:修约间隔为1000 拟修约数值拟修约数值 修约值修约值 25002 103(也可写为(也可写为 2000)3500 4 103(也可写为(也可写为4000)例例
49、3:将下列数字修约成:将下列数字修约成两位两位有效位数有效位数 拟修约数值拟修约数值 修约值修约值 0.0325 0.032 32500 32103(也可为(也可为3200)第73页,此课件共78页哦 3.4 负数修约时,先将其绝对值按上述负数修约时,先将其绝对值按上述3.13.3规定进行修约,然后在修约值前面加上负规定进行修约,然后在修约值前面加上负号。号。例例1:将下列数字修约到:将下列数字修约到“十十”数位数位 拟修约数值拟修约数值 修约值修约值 -355 -36 10(可写为(可写为-360)-325 -32 10(可写为(可写为-320)第74页,此课件共78页哦 例例2:将下列数字
50、修约成:将下列数字修约成两位两位有效位数有效位数 拟修约数值拟修约数值 修约值修约值 -365 -36 10(也可写为(也可写为-360)-0.0365 -0.036第75页,此课件共78页哦 4 不许连续修约(应一次修约到位)不许连续修约(应一次修约到位)4.1 拟修约数字应在确定修约位数后一次修约获拟修约数字应在确定修约位数后一次修约获得结果,得结果,即一次修约到位即一次修约到位 而不得多次按第而不得多次按第3章规则连续修约。章规则连续修约。例如:修约例如:修约15.4546,修约间隔为,修约间隔为1 正确的做法:正确的做法:15.454615 不正确的做法:不正确的做法:15.45461