《矩形性质(教育精品).ppt》由会员分享,可在线阅读,更多相关《矩形性质(教育精品).ppt(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、矩矩 形形两组对边分别平行的四边形两组对边分别平行的四边形是平行四边形是平行四边形ABCD四边形四边形ABCD如果如果ABCD ADBCBDABCDAC平行四平行四边形的边形的性质:性质:边边平行四边形的对边平行四边形的对边平行平行;平行四边形的对边平行四边形的对边相等相等;角角平行四边形的对角平行四边形的对角相等相等;平行四边形的邻角平行四边形的邻角互补互补;对角线对角线平行四边形的对角线平行四边形的对角线互相平分互相平分;平行四平行四边形的边形的判定:判定:边边两组对边分别两组对边分别平行平行的四边形;的四边形;两组对边分别两组对边分别相等相等的四边形;的四边形;角角两组对角分别两组对角分
2、别相等相等的四边形;的四边形;对角线对角线对角线对角线互相平分互相平分的四边形;的四边形;一组对边一组对边平行平行且且相等相等的四边形;的四边形;平行四边形的判定定理:平行四边形的判定定理:一个角是一个角是直角直角两组对边两组对边分别平行分别平行平行平行四边形四边形矩形矩形情情景景创创设设 我们已经知道平行四边形是特殊我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性四边形的性质外,还有它的特殊性质,同样对于平行四边形来说也有质,同样对于平行四边形来说也有特殊情况即特殊的平行四边形,这特殊情况即特殊的平行四边形,这堂课我们就来
3、研究一种特殊的平行堂课我们就来研究一种特殊的平行四边形四边形 矩形矩形有一个角是直角的平行四边形是矩形矩形的定义:平行四边形平行四边形矩形矩形有一个角有一个角 是直角是直角矩形是特殊的平行四边形矩形是特殊的平行四边形具具备备平行四平行四边边形所有的性形所有的性质质ABCDO角角边边对角线对角线对边平行且相等对边平行且相等对角相等对角相等对角线互相平分对角线互相平分矩形的一般性质矩形的一般性质:探索新知探索新知:矩形是一个特殊的平行四边形,除了具有平行矩形是一个特殊的平行四边形,除了具有平行四边形的所有性质外,还有哪些特殊性质呢?四边形的所有性质外,还有哪些特殊性质呢?猜想1:矩形的四个角都是直
4、角猜想2:矩形的对角线相等ABCD求证:矩形的四个角都是直角求证:矩形的四个角都是直角已知:如图,四边形已知:如图,四边形ABCD是矩形是矩形求证:求证:A=B=C=D=90ABCD证明:证明:四边形四边形ABCD是矩形是矩形 A=90又又 矩形矩形ABCD是平行四边形是平行四边形 A=C B=D A+B=180 A=B=C=D=90即即矩形的四个角都是直角矩形的四个角都是直角已知:如图已知:如图,四边形四边形ABCD是矩形是矩形 求证:求证:AC=BDABCD证明:在矩形证明:在矩形ABCD中中ABC=DCB=90又又 AB=DC,BC=CBABCDCBAC=BD 即即矩形的对角线相等矩形的
5、对角线相等求证求证:矩形的对角线相等矩形的对角线相等矩形特殊的性质矩形特殊的性质矩形的四个角都是直角矩形的四个角都是直角矩形的两条对角线相等矩形的两条对角线相等从角上看:从角上看:从对角线上看:从对角线上看:矩形的矩形的 两条对角线互相平分两条对角线互相平分矩形的两组对边分别矩形的两组对边分别平行平行矩形的两组对边分别矩形的两组对边分别相等相等矩形的四个角都是直角矩形的四个角都是直角矩形矩形 的的两条对角线相等两条对角线相等边边对角线对角线角角数学语言数学语言四边形四边形ABCD是矩形是矩形AD=BC,CD=ABAD BC,CD ABAC=BD ABCDOAO=CO,OD=OB观察并思考下面这
6、些物体是什么形状,它们是轴对称图形吗?是中心对称图形吗?有几条对称轴?边边角角对角线对角线对称性对称性平行四平行四边形边形矩形矩形对边平行对边平行且相等且相等对角相等对角相等邻角互补邻角互补对角线互对角线互相平分相平分中心对中心对称图形称图形对边平行对边平行且相等且相等四个角四个角为直角为直角对角线对角线互相互相平分且平分且相等相等中心对称图形中心对称图形 轴对称图形轴对称图形O这是矩形所这是矩形所特有的性质特有的性质 四个学生正在做投圈游戏四个学生正在做投圈游戏,他们分别站在一他们分别站在一个矩形的四个顶点处,目标物放在对角线的交点个矩形的四个顶点处,目标物放在对角线的交点处处,这样的队形对
7、每个人公平吗这样的队形对每个人公平吗?为什么?为什么?OABCD公平公平,因为因为OA=OC=OB=OD练习:教材95页练习1 如图,在矩形ABCD中,找出相等的线段与相等的角。ADCB O小试牛刀小试牛刀ODCBA相等的线段:相等的线段:AB=CD AD=BC AC=BD OA=OC=OB=OD=AC=BD相等的角:相等的角:DAB=ABC=BCD=CDA=90 AOB=DOC AOD=BOCOAB=OBA=ODC=OCD OAD=ODA=OBC=OCB等腰三角形有:等腰三角形有:OAB OBC OCD OAD直角三角形有:直角三角形有:RtABC RtBCD RtCDA RtDAB全等三角
8、形有:全等三角形有:RtABC RtBCD RtCDA RtDABOABOCD OADOCB已知四边形已知四边形ABCD是矩形是矩形已知:在已知:在RtABC中,中,ABC=900,BO是是AC上的中线上的中线.求证求证:BO=ACO OC CB BA AD证明证明:延长延长BO至至D,使使OD=BO,连结连结AD、DC.AO=OC,BO=OD四边形四边形ABCD是平行四边形是平行四边形.ABC=900 ABCD是矩形是矩形AC=BD1212BO=BD=AC再探新知再探新知例例1:1:如图,矩形如图,矩形ABCDABCD的两条对角线相交的两条对角线相交于点于点O O,AOB=60,AB=4AO
9、B=60,AB=4,求矩形对角求矩形对角线的长?线的长?AC与与BD相等且互相平分相等且互相平分 OA=OB AOB=60 AOB是等边三角形是等边三角形 OA=AB=4()矩形的对角线长矩形的对角线长 AC=BD=2OA=8()解:解:四边形四边形ABCD是矩形是矩形DCBAoP95P95练习练习3 3:已知:如图,矩形:已知:如图,矩形ABCDABCD的两的两条对角线相交于点条对角线相交于点O O,AOD=120AOD=120,AC=8cmAC=8cm,求矩形求矩形BCBC的长的长.ABOCD解:在矩形ABCD中,OA=OB AOD=120 AOB=60 又又OA=OB AOB为等边三角形
10、为等边三角形AB=OA=AC=4cm在RtABC中,(cm)BC=方法小结方法小结:如果矩形两对角如果矩形两对角 线的夹角是线的夹角是60 或或120,则其中必有等边三角形则其中必有等边三角形.点击进入点击进入矩形具有而一般平行四边形不矩形具有而一般平行四边形不具有的性质是具有的性质是 ()()B.B.对边相等对边相等A.A.对角相等对角相等C.C.对角线相等对角线相等 D.D.对角线互相平分对角线互相平分C C营中热身营中热身已知已知:四边形四边形ABCD是矩形是矩形1.若已知若已知AB=8,AD=6,则则AC_ OB=_ 2.若已知若已知 DOC=120,AC8,则则AD=_cm AB=_
11、cmODCBA5104营中寻宝营中寻宝DCBA4.已知已知ABC是是Rt,ABC=900,BD是斜边是斜边AC上的中线上的中线(1)若若BD=3 则则AC (2)若若C=30,AB5,则,则AC ,BD .6510营中寻宝营中寻宝(1)矩形具有而平行四边形不具有的性质()矩形具有而平行四边形不具有的性质()(A)内角和是内角和是360度(度(B)对角相等(对角相等(C)对边平行且相对边平行且相等(等(D)对角线相等对角线相等(2)下面性质中,矩形不一定具有的是()下面性质中,矩形不一定具有的是()(A)对角线相等(对角线相等(B)四个角相等(四个角相等(C)是轴对称图形是轴对称图形(D)对角线
12、垂直对角线垂直DD课课堂堂练练习习3.已知矩形的一条对角线与一边的夹角是已知矩形的一条对角线与一边的夹角是40,则两,则两 条对角线所夹锐角的度数为条对角线所夹锐角的度数为 A50 B60 C70 D80随堂练习随堂练习2 2.在矩形在矩形ABCDABCD中中,AEAEBDBD于于E E,若若 BE=OE=1BE=OE=1,则则 AC=AC=,AB,ABBCDEAO4 42 23.如图如图,用用8块相同的长方形地砖拼成一个矩形块相同的长方形地砖拼成一个矩形地面地面,则每块长方形地砖的长和宽分别是则每块长方形地砖的长和宽分别是()(A)48cm,12cm;(B)48cm,16cm;(C)44cm,16cm;(D)45cm,15cm.60cmD