函数与极限知识点ppt课件.ppt

上传人:飞****2 文档编号:87444449 上传时间:2023-04-16 格式:PPT 页数:54 大小:602.50KB
返回 下载 相关 举报
函数与极限知识点ppt课件.ppt_第1页
第1页 / 共54页
函数与极限知识点ppt课件.ppt_第2页
第2页 / 共54页
点击查看更多>>
资源描述

《函数与极限知识点ppt课件.ppt》由会员分享,可在线阅读,更多相关《函数与极限知识点ppt课件.ppt(54页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能第一章函数与极限第一章函数与极限函数与极限函数与极限微积分中的二个重要基本概念微积分中的二个重要基本概念函数函数高等数学研究的基本对象高等数学研究的基本对象极限极限是否采用极限的运算方法,是高等数学与是否采用极限的运算方法,是高等数学与 初等数学的根本区别初等数学的根本区别为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能第一节第一节 函函 数数一函数概念:一函数概念:常量与变量:常量与变量:常量常量:某一变化过程中:某一变化

2、过程中保持数值不变的量保持数值不变的量.变量变量:在某一变化过程中:在某一变化过程中取不同数值的量取不同数值的量一个量是常量还是变量只是一个量是常量还是变量只是相对相对而言的而言的例:同一地点的例:同一地点的=9.8米米/秒秒2 (初等数学研究的主要对象初等数学研究的主要对象)例:自由落体例:自由落体=gt2/2中的中的S与与t都是变量都是变量.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能函数的概念:函数的概念:函数关系函数关系变量之间的依赖关系变量之间的依赖关系函数定义函数定义:设设与是两个变量与是两个变量,如果对于在数集中所

3、取的,如果对于在数集中所取的 每一个值,通过与之间的某一每一个值,通过与之间的某一对应律对应律,都有一个都有一个 (或多个或多个)确定的确定的 y 值与之对应值与之对应,则称则称 f 是上的函数是上的函数.记作:记作:y=f(x),x X称为自变量,称为因变量称为自变量,称为因变量称为函数的定义域称为函数的定义域 而所有对应的值组成的数集则称为函数的值域而所有对应的值组成的数集则称为函数的值域 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能函数的表示方法:函数的表示方法:解析法解析法 (如如 y=f(x)列表法列表法图象法图象法其

4、其 他他函数的表示法函数的表示法解析法可用一个式子表示也可用多个式子表示解析法可用一个式子表示也可用多个式子表示.例如例如:cosx -x01 0 x1 1/x x 1f(x)=(分段函数分段函数)注:分段函数虽然由多个式子组成的,但它注:分段函数虽然由多个式子组成的,但它不是多个函数,而是一个函数不是多个函数,而是一个函数为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能 幂函数:幂函数:=xa 指数函数:指数函数:=ax 对数函数:对数函数:=logax 三角函数:三角函数:=sinx,y=cosx,y=tgx,y=ctgx.反三

5、角函数:反三角函数:y=arcsinx,y=arccosx,y=arctgx,y=arcctgx.二初等函数:二初等函数:1 1基本初等函数基本初等函数:(中学学过的)中学学过的)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能2 2复合函数复合函数:形如:形如:=f(x)(u=(x)定义定义:设变量设变量 y 是变量是变量 u 的函数的函数,变量变量 u 又是变量又是变量 x 的函数即的函数即 y=f(u),u=(x),如果变量如果变量x的某些值通过中间变量的某些值通过中间变量u 可以确定变量可以确定变量 y 的值时的值时,则称则

6、称 y 是是 x 的复合函数的复合函数,记作记作 y=f(x)(y因变量因变量,u中间变量中间变量(既是自变量又是因变量既是自变量又是因变量),x自变量自变量)注注:函数函数u=(x)的值域不能超过函数的值域不能超过函数y=f(u)的定义域的定义域.形成复合函数的中间变量可以不止一个形成复合函数的中间变量可以不止一个,如如:y=f(x)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例:例:y=cos(2t+/3)那么拆成什么形式好呢那么拆成什么形式好呢?.一般复合函数拆开的结果应使拆成的每一个函数都是一般复合函数拆开的结果应使拆成

7、的每一个函数都是基本初等基本初等 函数函数或是或是它们的和它们的和,差差,积积,商商.将复合函数拆成简单函数:(重点)将复合函数拆成简单函数:(重点)例:例:例:例:可分解为可分解为:y=cosx,x=2t+/3.或或:y=cos2x,x=t+/6为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能3 3初等函数初等函数定义:由定义:由基本初等函数基本初等函数经过经过有限次加,减,乘,除四则运算有限次加,减,乘,除四则运算和和 有限次复合运算有限次复合运算而构成的而构成的仅用一个解析式表达仅用一个解析式表达的函数,的函数,称为初等函数称

8、为初等函数(注:不用一个式子表示的函数就不是初等函数)(注:不用一个式子表示的函数就不是初等函数)问:分段函数是否是初等函数?问:分段函数是否是初等函数?不是初等函数,但它是一个函数不是初等函数,但它是一个函数.例:例:都是初等函数。都是初等函数。为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能第二节第二节 函数的极限函数的极限 极限概念的引入极限概念的引入:例例1.有一变量其变化趋势为有一变量其变化趋势为:1,1/2,1/3,1/4,.,1/n,.则该变量的极限是则该变量的极限是0.(数列极限数列极限)为深入学习习近平新时代中国特

9、色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能一一.函数的极限函数的极限:对于函数对于函数 y=f(x),我们将分别考察以下两种情况的极限我们将分别考察以下两种情况的极限:1.自变量自变量 x x0 时函数的极限时函数的极限.2.自变量自变量 x 时函数的极限时函数的极限.xx0-0 时时,函数的极限函数的极限xx0+0 时时,函数的极限函数的极限x-时时,函数的极限函数的极限x+时时,函数的极限函数的极限为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能1.1.x xx x0 0 时函数的极限时函

10、数的极限:记作记作:定义定义:设函数设函数 f(x)在点在点 x0 附近有定义附近有定义(但在但在 x0 处可以没有定义处可以没有定义),当自变量当自变量 x 以以任何方式任何方式无限趋近于定值无限趋近于定值 x0 时时,若函数若函数 f(x)无限趋近于一个常数无限趋近于一个常数 A,就说当就说当 x 趋近于趋近于 x0时时,函数函数 f(x)以以 A 为极限为极限.注注:仅要求函数仅要求函数在点在点x0 附近有定义附近有定义,但在但在 x0 处可以没有定义处可以没有定义.“自变量自变量 x 以任何方式以任何方式无限趋近于定值无限趋近于定值 x0”是指是指左趋近左趋近和和 右趋近右趋近(对于一

11、元函数对于一元函数).Axfxx=)(lim0为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能.函数的函数的单侧极限单侧极限:左极限左极限:右极限右极限:x从从左侧左侧趋近于趋近于x0时产生的极限时产生的极限.记作记作:x从从右侧右侧趋近于趋近于x0时产生的极限时产生的极限.记作记作:为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能即左极限和右极限即左极限和右极限都存在并且相等都存在并且相等时时,才能说函数的极限存在才能说函数的极限存在例例:右图中的函数右图中的函数f(x

12、)(分段函数分段函数)AxfxfAxfxxxxxx=+-)(lim)(lim)(:)(lim00000当且仅当当且仅当存在的充要条件存在的充要条件极限极限.BAxyx0oAB,即左极限即左极限右极限右极限此函数此函数 f(x)在在 x0处的极限不存在处的极限不存在.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能2.x 2.x 时函数的极限时函数的极限:函数在正无限处极限函数在正无限处极限:函数在负无限处极限函数在负无限处极限:函数在正负无限处极限函数在正负无限处极限:oxyA为深入学习习近平新时代中国特色社会主义思想和党的十九大精

13、神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例:对于函数对于函数 f(x)=arctgx,x时极限是否存在时极限是否存在?解解:当当 x+时时,f(x)=arctgx/2,函数极限不存在函数极限不存在(当当 x 时时).OYx/2-/2当当 x-时时,f(x)=arctgx-/2.AxfxfAxfxxx=-+)(lim)(lim)(:)(lim当且仅当当且仅当存在的充要条件存在的充要条件极限极限.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能极限不存在极限不存在的几种情形式的几种情形式:1.当当 x x0(x)时时,f

14、(x),极限不存在极限不存在.这时虽然这时虽然 f(x)的极限不存在的极限不存在,但也可记作但也可记作:2.左右极限至少有一个不存在或都存在但不相等时左右极限至少有一个不存在或都存在但不相等时,极限不存在极限不存在.3.当当 x x0(x)时时,f(x)的变化趋势振荡不定的变化趋势振荡不定,此时函数极限此时函数极限 不存在不存在.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能二二.无穷小和无穷大无穷小和无穷大.1.1.无穷小定义无穷小定义:以以零为极限的变量零为极限的变量就是无穷小量就是无穷小量.例例:当当 x +时时,1/x 的

15、极限为零的极限为零;注注:称一个函数是无穷小量时称一个函数是无穷小量时,必须指出其自变量的变化趋势必须指出其自变量的变化趋势.无穷小量是无穷小量是变量变量而不是常数而不是常数 0,也不是很小的数也不是很小的数(如如 10-10000)但但0可以看成是无穷小量。可以看成是无穷小量。当当 x 1时时,x-1 的极限也是零的极限也是零.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能2.2.无穷大定义无穷大定义:在变化过程中在变化过程中其绝对值无限变大其绝对值无限变大,(无穷大量的变化趋势和无穷小的变化趋势相反无穷大量的变化趋势和无穷小的

16、变化趋势相反)例例:当当 x 0 时时,1/x 的值无限增大的值无限增大;注注:称一个函数是无穷大量时称一个函数是无穷大量时,必须指出其自变量的变化趋势必须指出其自变量的变化趋势.无穷大量是无穷大量是变量变量,而不是一个很大的量而不是一个很大的量.无穷大量无穷大量,无穷小量是无穷小量是变量变量,而不是一个确定的量而不是一个确定的量.当当 x /2 时时,y=tgx 的绝对值的绝对值 y无限增大无限增大.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能3.3.无穷小与无穷大的无穷小与无穷大的关系关系:互为倒数互为倒数关系关系例例:当当

17、 x 0 时时,1/x 为无穷大量为无穷大量,而而 x 为无穷小量为无穷小量.(在在同一变化过程中同一变化过程中).为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能4.4.无穷小无穷小定理定理:定理定理1.函数函数 f(x)以以A为极限的充分必要条件是函数为极限的充分必要条件是函数 f(x)与常数与常数A 之差是一个无穷小量之差是一个无穷小量.即即 lim f(x)=A 成立的充要条件是成立的充要条件是:lim f(x)-A=0亦即亦即,若函数若函数 f(x)以以A为极限为极限,若设若设 f(x)-A=,则则为该极限过程中的无穷小量

18、为该极限过程中的无穷小量.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能定理定理2.有限个有限个无穷小无穷小的代数和仍为无穷小量的代数和仍为无穷小量.定理定理3.有界函数与有界函数与无穷小无穷小的乘积仍为无穷小量的乘积仍为无穷小量.(有界函数有界函数:若函数若函数 f(x)在某个区间在某个区间 X内满足内满足:Af(x)B,其中其中 A,B 是两个定数是两个定数,则称则称 f(x)在区间在区间X内有界内有界,A下界下界,B上界上界).推论推论1.常数与常数与无穷小量无穷小量之积仍为无穷小量之积仍为无穷小量.推论推论2.有限个有限个

19、无穷小量无穷小量的乘积仍为无穷小量的乘积仍为无穷小量.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能5.5.无穷小无穷小无穷小无穷小的比较的比较 :设设,为两个无穷小为两个无穷小.若若 lim/=0(或或 lim /=),则称则称是比是比高阶的无穷小高阶的无穷小 或称或称是比是比低阶的无穷小低阶的无穷小.若若 lim/=k0,则称则称与与是同阶无穷小是同阶无穷小.特别地若特别地若 lim/=1,则称则称与与是等价无穷小是等价无穷小.记作记作:为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥

20、中小学图书室育人功能即即 lim/=0 是比是比高阶高阶的无穷小的无穷小.是比是比低阶低阶的无穷小的无穷小.k0 与与是是同阶同阶无穷小无穷小.1 与与是是等价等价无穷小无穷小.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能三三.极限的极限的四则运算法则四则运算法则:定理定理:设在某变化过程中有设在某变化过程中有 lim f(x)=A,lim g(x)=B,则有则有:lim f(x)g(x)=lim f(x)lim g(x)=AB.lim f(x)g(x)=lim f(x)lim g(x)=AB lim f(x)/g(x)=lim

21、 f(x)/lim g(x)=A/B (B0)性质性质:lim C=C (C为常量为常量).limC f(x)=C lim f(x)lim f(x)n=lim f(x)n (n为正整数为正整数).为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能31)1)(1(lim,0,1(:21=-+-=xxxxxx原式故不能用极

22、限的商定理)分母的极限为时当解为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能四.两个重要极限:为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能第三节第三节 函数的连续性函数的连续性函数的连续性反映在图形上就是:函数曲线是连续而不间断的函数的连续性反映在图形上就是:函数曲线是连续而不间断的xyxyoo(连续的)(连续的)(在(在x0处间断)处间断)x0y=f(x)

23、y=f(x)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能一一.函数的增量函数的增量:函数函数 y=f(x),当自变量当自变量 x 从从 x0 变到变到 x1 时时,函数函数 y 就从就从 f(x0)变到变到 f(x1),这时称这时称 x=x1-x0为自变量为自变量 x的增量的增量,称称y=f(x1)-f(x0)或或y=f(x0+x)-f(x0)为函数为函数 在在 x=x0处的增量处的增量.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能函函数数增增量量的的几几何何意意

24、义义:yf(x0)f(x1)x0 x1=x0+xy=f(x)xABxyo记作记作:y=f(x1)-f(x0)或或 y=f(x0+x)-f(x0)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能二二.函数的连续点与间断点函数的连续点与间断点:1.连续性定义连续性定义:设函数设函数y=f(x)在点在点x0及其附近有定义及其附近有定义,当当x0有一增量有一增量x时时,相应地相应地函数也有一增量函数也有一增量:y=f(x0+x)-f(x0),若若则称函数则称函数y=f(x)在点在点x0处连续处连续(并称并称x0为函数的连续点为函数的连续点)

25、若以若以x=x0+x代入上式代入上式,则有则有x0.则有则有为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能于是函数的连续性定义可用以下三种不同的形式给出于是函数的连续性定义可用以下三种不同的形式给出:)()(lim000 xfxxfx=D D+D D)()(lim00 xfxfxx=0lim0=D DD Dyx(其中其中x=x-x0,y=f(x)-f(x0)=f(x0+x)-f(x0)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能连连续续函函数数的的几几何何意意义义:

26、xyoy=f(x)x0(x0,y0)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能由定义知由定义知:函数函数y=f(x)y=f(x)在点在点x x0 0处连续处连续必须满足以下三个条件必须满足以下三个条件:f(x)在点在点x0及其附近有定义及其附近有定义.(要求比极限存在的条件高要求比极限存在的条件高)2.间断点间断点:不满足以上三个条件之一的点就叫做不满足以上三个条件之一的点就叫做 f(x)的间断点的间断点.极限必须存在(极限必须存在(即即 ))(lim0 xfxx)(lim)(lim00 xfxfxxxx+-=)()(lim0

27、0 xfxfxx=(即该极限等于点(即该极限等于点x0处的函数值)处的函数值)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能例例:举一例说明间断点的第举一例说明间断点的第种情形种情形:=11sin)(xxxfy当当 x0 时时当当x=001sinlim)(lim00=xxxfxx解解:而而f(0)=1y=f(x)在在 x=0处不连续处不连续.(若定义中若定义中 x=0 时时,f(x)=0,则则 f(x)在在 x=0 处连续处连续)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室

28、育人功能3.3.函数的左连续与右连续函数的左连续与右连续:4.4.函数函数f(x)f(x)在点在点x x0 0处连续的处连续的充分必要条件充分必要条件是是:左连续左连续:若函数若函数f(x)在在x0点及某一邻域内有定义点及某一邻域内有定义,且只有且只有 则称则称 f(x)在点在点 x0处左连续处左连续.)()(lim000 xfxfxx=-(即充要条件为即充要条件为:f(x)在在x0点既是左连续又是右连续点既是左连续又是右连续)(lim)(lim00000 xfxfxxxx=+-即即:右连续右连续:若函数若函数f(x)在在x0点及某一邻域内有定义点及某一邻域内有定义,且只有且只有 则称则称 f

29、(x)在点在点 x0处右连续处右连续.)()(lim000 xfxfxx=+为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能5.5.连续点与极限的关系连续点与极限的关系:函数在函数在x0点处连续点处连续函数在函数在x0处极限存在处极限存在(回忆极限定义与连续点定义回忆极限定义与连续点定义)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能解解:f(x)在点在点 x=3 处处没有定义没有定义.点点 x=3 是一个间断点是一个间断点.例例:考察函数考察函数 的间断点的间断点.0

30、 xyA(3,6)3(虽然虽然 极限存在极限存在)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能2)2(lim)(lim20000-=-=-xxfxx)(lim)(lim0000 xfxfxx+-例例:讨论函数讨论函数 -+=212)(22xxxf当当 x0当当 x=0 的连续性的连续性.当当 x02)2(lim)(lim20000=+=+xxfxx解解:x0 时时,函数的极限不存在函数的极限不存在.x=0 点是间断点点是间断点,而其余点是连续的而其余点是连续的.0 xy+2-2为深入学习习近平新时代中国特色社会主义思想和党的十九

31、大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能三三.在区间上连续的函数在区间上连续的函数:1.f(x)在在开区间开区间(a,b)上连续上连续:如果函数如果函数 f(x)在在开区间开区间(a,b)上每一点都连续上每一点都连续,则称函数则称函数f(x)在在开区间开区间(a,b)上连续上连续.2.f(x)在在闭区间闭区间a,b上连续上连续:如果函数如果函数 f(x)在在开区间开区间(a,b)上连续上连续,且有且有(即即 f(x)在在左端点处右连续左端点处右连续),(即即 f(x)在在右端点处左连续右端点处左连续),则称函数则称函数f(x)在在闭区间闭区间a,b上连续上连续.为深入学习习近

32、平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能它们在区间它们在区间(-,+)上是连续的上是连续的.例例:在区间在区间(-,+)是否都连续是否都连续?例例:y=2x ,y=sinx.在区间在区间(-,+)是否都连续是否都连续?它们在区间它们在区间 (-,+)上任一点都是连续的上任一点都是连续的.解解:解解:x=0 处函数无定义处函数无定义.函数在函数在 x=0 点处是间断点点处是间断点,即在即在(-,+)不是都连续的不是都连续的.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能在在闭区

33、间闭区间上上连续函数连续函数的两个性质的两个性质:定理定理1.(1.(最大值最小值定理最大值最小值定理)在闭区间上的连续函数在该区间上在闭区间上的连续函数在该区间上至少至少取得它的最大值和最小值取得它的最大值和最小值各一次各一次.即一段连续曲线必有最高点和最低点即一段连续曲线必有最高点和最低点.ymaxyminoxyy=f(x)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能定理定理2.(2.(介值定理介值定理):):如果函数如果函数 y=f(x)在闭区间在闭区间a,b上连续上连续,且且f(a)f(b),则对介于则对介于f(a)和和

34、 f(b)之间的任何值之间的任何值C,在开区间在开区间(a,b)内至少存在一点内至少存在一点,使使f()=C,(ab).a123boxycf(a)f(b)其其几何意义几何意义:连续曲线连续曲线 y=f(x)与水平直线与水平直线 y=c至少相交于一点至少相交于一点.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能特殊地特殊地,若若f(a)与与f(b)异号异号则连续曲线则连续曲线 y=f(x)与与x轴至少相交于一点轴至少相交于一点,即方程即方程f(x)=0在区间在区间a,b内至少有一实根内至少有一实根.a123boxyf(b)f(a)为

35、深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能四四.初等函数的连续性初等函数的连续性:1.一切基本初等函数在其定义域内都是连续的一切基本初等函数在其定义域内都是连续的.2.连续函数的运算连续函数的运算:利用连续性定义和极限的运算法则即可得出利用连续性定义和极限的运算法则即可得出 连续函数的运算法则连续函数的运算法则:定理定理:设函数设函数f(x)和和g(x)均在均在x0处连续处连续,则则:F(x)=f(x)g(x)在点在点x0处连续处连续 F(x)=f(x)g(x)在点在点x0处连续处连续 F(x)=f(x)/g(x)在点在点x0处

36、连续处连续可推广至多个函数可推广至多个函数(即连续函数的和即连续函数的和,差差,积积,商仍是连续函数商仍是连续函数)为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能在在3.3.复合函数的连续性复合函数的连续性:)(ufy=0uu=定理定理:设函数设函数处连续处连续,函数函数)(00 xuj j=)(xfyj j=)(xuj j=在在x=x0处连续处连续,则复合函数则复合函数在在 x=x0 处连续处连续.(即连续函数的复合函数是连续函数即连续函数的复合函数是连续函数)00)()(limlim00uxxuxxxx=j jj j即当即当

37、xx0 时时,u u0又又函数函数 y=f(u)在点在点 u=u0 处连续处连续.则则)()(lim)(lim000ufufufuuxx=即即)()(lim00 xfxfxxj jj j=证明证明:)(xuj j=在点在点 x=x0处连续处连续 复合函数复合函数)(xfyj j=在点在点 x=x0处连续处连续.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能4.初等函数初等函数的连续性:的连续性:.一切一切初等函数初等函数在其定义域内是连续的在其定义域内是连续的.注注:此结论肯定了一个此结论肯定了一个初等函数初等函数的定义区间就是这个函数的的定义区间就是这个函数的 连续连续 区间区间.此结论肯定了此结论肯定了初等函数初等函数在其定义区间内任何一点的极限值在其定义区间内任何一点的极限值 就是该点的函数值就是该点的函数值,这就提供了一种非常简单而又实用的这就提供了一种非常简单而又实用的 极限计算方法极限计算方法.为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能解解:原式原式=lntg/4=ln1=0例例:求求tgxxlnlim4p p(ln tgx 是初等函数是初等函数)201limxx+例例:求求例例:求求解解:原式原式=解解:原式原式=

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁