《反比例函数复习课件(作课)(教育精品).ppt》由会员分享,可在线阅读,更多相关《反比例函数复习课件(作课)(教育精品).ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第十七章第十七章 反比例函数总复习反比例函数总复习(1 1)复习巩复习巩固反比例固反比例函数的意义,函数的意义,能灵活运用反比例函数的图像与性能灵活运用反比例函数的图像与性质解质解决问决问题题 (2 2)进一步体会数形结合的进一步体会数形结合的思想,思想,分类讨论思想,转化的思想在反比分类讨论思想,转化的思想在反比例函数问题中的运用例函数问题中的运用 学习目标学习目标:1、反、反比例函数比例函数的概念的概念 注意:注意:(1)k(1)k为常数,为常数,k0k0;K K的几何意义。的几何意义。(2)(2)自变量自变量x x的取值范围是的取值范围是x0 x0的一切实的一切实数数,且且要使实要使实际
2、问题有意义际问题有意义。y=kx-1xy=k 反反比例函数:一般地,形如比例函数:一般地,形如 (k(k为常数,为常数,k0k0)的函数叫做反比例函数)的函数叫做反比例函数.其其中中x x是自变量,是自变量,y y是是x x的函数,的函数,k k是比例系数是比例系数.当当k k0 0时,双曲线的两时,双曲线的两个分支分别在第一、三个分支分别在第一、三象限,在每个象限内,象限,在每个象限内,y y随随x x的增大而减小。的增大而减小。当当k k0 0时,双曲线的两时,双曲线的两个分支分别在第二、四个分支分别在第二、四象限,在每个象限内,象限,在每个象限内,y y随随x x的增大而增大。的增大而增
3、大。k的符号决定了双曲线的分布象限的符号决定了双曲线的分布象限k0k0k的符号决定了反比例函数在各个象限的增减性的符号决定了反比例函数在各个象限的增减性2.反比例函数的图象和性质反比例函数的图象和性质3、K的几何意义:|k|k|.P(m,n).P(m,n)AoyxB.P(m,n)双曲线双曲线 上一点上一点P(m,n)P(m,n)若过点若过点P P分别作分别作x x轴,轴,y y轴的垂线轴的垂线形成一个矩形形成一个矩形则则 S矩形矩形=Aoyx.P(m,n).P(m,n).P(m,n)若过点若过点P P作作x x轴轴(或(或y y轴轴)的)的垂线,垂线,并连结线段并连结线段OP,OP,形成形成一
4、个三角形,则一个三角形,则S S=1.下列函数,下列函数,其中是其中是y关于关于x的反比例函数的有:的反比例函数的有:(4 4)和()和(6 6)热身练习热身练习2.函数函数 的图像在二、四象限,则的图像在二、四象限,则m的的取值范围是取值范围是 _.3.已知反比例函数已知反比例函数 的图象的图象的每一条曲的每一条曲线上线上,y都都随随x的增大而的增大而减小减小,则则m的的取值范围是取值范围是_。m-2xy=1-mxy=4.如图点如图点 是反比例函数是反比例函数 的图象上的任意的图象上的任意 一点,一点,PA垂直于垂直于x轴,设三角形轴,设三角形AOP的面积为的面积为S,则则_ 4xy=4xy
5、=4xy=yxM2M122.已知函数已知函数 是是反反比例函数比例函数,则则 m=_ ;1.已知函数已知函数 是是反反比例函数比例函数,则则 m=_ ;623.已知已知 如果如果y是是x的正比例函数的正比例函数,m=.如果如果y是是x的反比例函数的反比例函数,m=.+2基础练习基础练习y y5、已知:(、已知:(x1,y1)()(x2,y2)为反比例函数)为反比例函数 图象上的点,图象上的点,当当x1x2y2,则则 此反比例的解析式可以此反比例的解析式可以 为为 _。(只需写出符合条件的一个式子即可)。(只需写出符合条件的一个式子即可)6.已知:已知:y=y1+y2,其中,其中y1与与x成正比
6、例,成正比例,y2与与x成反成反比例,当比例,当x=1时,时,y=4,当,当x=2时,时,y=5,求函数,求函数y的解的解析式析式。4.已知函数已知函数y=的图象经过点的图象经过点(3,2),那么那么k=.6ACoyxP8.已知:已知:A是双曲线是双曲线 上的一点,上的一点,过点过点A向向x轴作垂线,垂足为轴作垂线,垂足为B,AOB的面积是的面积是3,则则k为为 。7.根据图形写出函数的解析式根据图形写出函数的解析式。x0(-3,1)61010.已知点已知点A(-2,yA(-2,y1 1),B(-1,y),B(-1,y2 2)都在反比例函数都在反比例函数 的图象上的图象上,则则y y1 1与与
7、y y2 2的大小关系的大小关系(从大到小从大到小)为为 .y1 y21111.已知点已知点A(-2,yA(-2,y1 1),B(-1,y),B(-1,y2 2)都在反比例函都在反比例函数数 的图象上的图象上,则则y y1 1与与y y2 2的大小的大小关系关系(从大到小从大到小)为为 .(k(k0)0)y2 y11 12 2.已知点已知点都在反比例函数都在反比例函数 的图象上的图象上,则则y y1 1与与y y2 2的大小关系的大小关系(从大到小从大到小)为为 .(k(k0)0)A(xA(x1 1,y,y1 1),B(x),B(x2 2,y,y2 2)且且x x1 10 0 x x2 2yx
8、ox x1 1x x2 2Ay1y2By1 0y21313.已知点已知点都在反比例函数都在反比例函数 的图象上的图象上,则则y y1 1、y y2 2与与y y3 3的大小关系的大小关系(从大到小从大到小)为为 .A(-2,yA(-2,y1 1),B(-1,y),B(-1,y2 2),C(4,y),C(4,y3 3)yxo-1y1y2AB-24 4Cy3y3 y1y214.已知已知k0,则函数则函数 y1=kx+k与与y2=在同一坐标系中的图像大致是在同一坐标系中的图像大致是 ()1616.如图:一次函数的图象如图:一次函数的图象 与反比例函数与反比例函数 交于交于M(2M(2,m m )、N
9、(-1N(-1,-4)-4)两点两点.(1 1)求反比例函数和一)求反比例函数和一 次函数的解析式;次函数的解析式;(2 2)根据图象写出反比)根据图象写出反比 例函数的值大于一例函数的值大于一 次函数的值的次函数的值的x x的取的取 值范围值范围.能力提升:MM(2 2,mm)2 20 0-1-1N N(-1-1,-4-4)y yx xMM(2 2,mm)2 20 0-1-1N N(-1-1,-4-4)y yx x(1 1)求反比例函数和一次函数的解析式;)求反比例函数和一次函数的解析式;解解:(1 1)点点N N(-1-1,-4-4)在反比例函数图象上)在反比例函数图象上k=4,k=4,又
10、又点点M M(2 2,m m)在反比例函数)在反比例函数 图象上图象上m=2 Mm=2 M(2 2,2 2)点点M M、N N都在都在y=ax+by=ax+b的图象上的图象上y=2x-2y=2x-2解得解得y yx x2 20 0-1-1N N(-1-1,-4-4)MM(2 2,mm)(2)根据图象写出反比例函数的值大于一次函数的值的x的取值范围.(2 2)观察图象得:)观察图象得:)观察图象得:)观察图象得:当当当当x-1x-1或或或或0 x20 x0K0位位置置增增减减性性位位置置增增减减性性y=kx (k0)xk(k是常数是常数,k0)y=直线直线 双曲线双曲线一三一三象限象限 y随随x的增大而增大的增大而增大一三一三象限象限在每个象限内在每个象限内 y随随x的增大而减小的增大而减小二四二四象限象限二四二四象限象限 y随随x的增大而减小的增大而减小在每个象限内在每个象限内 y随随x的增大而增大的增大而增大正比例函数与反比例函数的区别正比例函数与反比例函数的区别小结想一想想一想P(m,n)oyxyP(m,n)oxP/图中阴影部分的面积是多少?图中阴影部分的面积是多少?图中三角形的面积是多少?图中三角形的面积是多少?