车辆跟驰理论.pptx

上传人:莉*** 文档编号:87370826 上传时间:2023-04-16 格式:PPTX 页数:52 大小:685.20KB
返回 下载 相关 举报
车辆跟驰理论.pptx_第1页
第1页 / 共52页
车辆跟驰理论.pptx_第2页
第2页 / 共52页
点击查看更多>>
资源描述

《车辆跟驰理论.pptx》由会员分享,可在线阅读,更多相关《车辆跟驰理论.pptx(52页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第一节 跟驰理论概述1950年赫尔曼(Herman)博士运用动力学方法建立跟车模型,进而提出了跟驰理论。随后,Reuschel 和Pipes 研究了跟驰理论的解析方法。北京工业大学应用混沌论开展了城市快速路交通流行为阈值模型以及车辆跟驰模型研究。吉林大学研究了模糊跟驰行为等等。第1页/共52页定义:车辆跟驰模型是运用动力学方法,探究在无法超车的单一车道列队行驶时,车辆跟驰状态的理论。原理:车辆跟驰模型从交通流的基本元素人车单元的运动和相互作用的层次分析车道交通流的特性。求解:通过求解跟驰方程,不仅可以得到任意时刻车队中各车辆的速度、加速度和位置等参数。第2页/共52页特点:车辆跟驰模型是交通系

2、统仿真中最重要的动态模型,用来描述交通行为即人车单元行为。意义:车辆跟驰模型的研究对于了解和认识交通流的特性,进而把这些了解和认识应用于交通规划、交通管理与控制,充分发挥交通设施的功效,解决交通问题有着极其重要的意义。第3页/共52页一、跟驰状态的判定跟驰状态临界值的判定是车辆跟驰研究中的一个关键,现有的研究中,对跟驰状态的判定存在多种观点。国外的研究中,美国1994年版的道路通行能力手册规定当车头时距小于等于5s时,车辆处于跟驰状态;Paker在研究货车对通行能力的影响时,采用了6s作为判定车辆跟驰状态的标准;Traffic flow theory认为跟驰行为发生在两车车头间距为0100m或

3、0125m的范围内;Weidman的研究则认为车头间距小于等于150m时,车辆处于跟驰状态。第4页/共52页在跟驰理论中,目前常用的判定跟驰状态的方法有两种。一种是基于期望速度的判定方法,它是通过判断前车速度是否小于后随车的期望车速来判定车辆是否处于跟驰状态;另一种是基于相对速度绝对值的判定方法,它是利用前后车速度差的绝对值随车头时距变化规律定量地判定车辆行驶的状态。这两种方法都存在一定的缺陷。因此,又有学者提出利用前后车速度的相关系数随车头时距变化的规律来确定车辆跟驰状态临界值。这一方法考虑的信息更为全面,与现实结合更为紧密,能有效解决现有方法的不足。单车道车辆跟驰理论认为,车头间距在100

4、125m以内时车辆间存在相互影响。第5页/共52页二、车辆跟驰特性跟驰状态下车辆的行驶具有以下特性:制约性延迟性传递性制约性、延迟性及传递性构成了车辆跟驰行驶的基本特征,同时也是车辆跟驰模型建立的理论基础。第6页/共52页1、制约性紧随要求:在后车跟随前车运行的车队中,出于对旅行时间的考虑,后车驾驶员总不愿意落后很多,而是紧随前车前进。车速条件:后车的车速不能长时间大于前车的车速,而只有在前车速度附近摆动,否则会发生追尾碰撞间距条件:车与车之间必须保持一个安全距离,即前车制动时,两车之间有足够的距离,从而有足够的时间供后车驾驶员做出反应,采取制动措施。紧随要求、车速条件和间距条件构成了一对汽车

5、跟驰行驶的制约性,即前车的车速制约着后车的车速和车头间距。第7页/共52页2、延迟性由制约性可知,前车改变运行状态后,后车也要改变,但并不同步,而是后车运行状态滞后于前车。驾驶员对前车运行状态的改变的反应过程包括4个阶段感觉阶段:前车运行状态的改变被察觉认识阶段:对这一变化加以认识判断阶段:对本车将要采取的措施做出判断执行阶段:由大脑到手脚的操作动作这4个阶段所需要的时间称为反应时间。假设反应时间为T,前车在t时刻的动作,后车要经过(t+T)时刻才能做出相应的动作,这就是延迟性。第8页/共52页3、传递性由制约性可知,第一辆车的运行状态制约着第二辆车的运行状态,第二辆车又制约着第三辆车,第n辆

6、车制约着第n+1辆。一旦第一辆车改变运行状态,其效应会一辆接一辆的向后传递,直至车队最后一辆,这就是传递性。这种运行状态改变的传递又具有延迟性。这种具有延迟性的向后传递的信息不实平滑连续的,而是像脉冲一样间断连续的。第9页/共52页第二节 线性跟驰模型一、线性跟驰模型的建立跟驰模型实际上是关于反应刺激的关系式,用方程表示为:反应=灵敏度刺激驾驶员接受的刺激是指其前面引导车的加速或减速行为以及随之产生的两车之间的速度差或车间距离的变化;驾驶员对刺激的反应是指根据前车所做的加速或减速运动而对后车进行的相应操纵及其效果。第10页/共52页线性跟驰模型线性跟驰模型t t t t时刻时刻时刻时刻t+Tt

7、+Tt+Tt+T时刻时刻时刻时刻t+T+t1t+T+t1t+T+t1t+T+t1时刻时刻时刻时刻t t t t时刻前车开始时刻前车开始时刻前车开始时刻前车开始减速位置减速位置减速位置减速位置前车完全前车完全前车完全前车完全停止位置停止位置停止位置停止位置后车完全后车完全后车完全后车完全停止位置停止位置停止位置停止位置后车开始后车开始后车开始后车开始减速位置减速位置减速位置减速位置匀速运动匀速运动匀速运动匀速运动运减速运动运减速运动运减速运动运减速运动第11页/共52页线性跟驰模型示意图 第12页/共52页第13页/共52页基本公式:假设两车的制动距离相等,即则有两边对t求导,得到 亦即其中 第

8、14页/共52页二、非线性跟驰模型线性跟驰模型假定驾驶员的反应强度与车间距离无关,即对给定的相对速度,不管车间距离小(如5m或10m),反应强度都是相同的。实际上,对于给定的相对速度,驾驶员的反应强度应该随车距间距的减少而增加,这是因为驾驶员在车辆间距较小的情况相对于车辆间距较大的情况更紧张,因而反应的强度也会较大。因此,严格来说,反应灵敏度系数并非常量,而是与车头间距成反比的,由此得到非线性跟驰模型。第15页/共52页1、车头间距倒数模型该模型认为反应强度系数与车头间距成反比即:第16页/共52页2、基于速度的车头间距倒数模型事实上,反应强度系数不仅与车头间距成反比,而且还与车辆速度成正比。

9、因此,可对反应强度系数作如下改进:则有 第17页/共52页三、线性与非线性跟驰模型的比较相同点 均为基于反应刺激模式。区别线性跟驰模型:反应强度系数为常量。非线性跟驰模型:反应强度系数为变量,与速度成正比,与间距成反比。第18页/共52页基本假设:加速度与两车之间的速度差成正比;与两车的车头间距成反比;同时与自身的速度也存在直接的关系。模型特点:GM模型清楚地反映出车辆跟驰行驶的制约性、延迟性及传递性。t+T时刻第n+1辆车之间的加速度;t时刻第n辆车与第n+1辆车之间的速度差;t时刻第n辆车与第n+1辆车之间的距离;常数。四、跟驰模型的一般表达式第19页/共52页第三节 稳定性分析 本节讨论

10、跟驰模型的两类波动稳定性:局部稳定性和渐进稳定性。1、局部稳定性:关注跟驰车辆对它前面车辆运行波动的反应,即关注车辆间配合的局部行为。2、渐进稳定性:关注车队中每一辆车的波动特性在车队中的表现,即车队的整体波动性。如头车的波动在车队中的传播。第20页/共52页一、局部稳定性 通过第一、二节的分析得到车辆跟驰模型方程。在线性跟车模型中,和分别表示t时刻前车和跟车的位移。这里C=T,跟随车辆的局部行为的状态可以通过求解拉普拉斯变换方程得到。初始时头车和跟车以恒定的速度u运行,卡欧(Chow)给出了跟车的速度。第21页/共52页 如果给定跟车的初始状态,那么跟车的总体行为就可以描述出来。一般认为初始

11、状态是头车和跟车都以恒定的速度行驶,对头车和跟车应用移动坐标系,跟车的加速度简化为:其中,L-1表示拉普拉斯的逆变形。类似地,可以得到车辆速度和车辆间距的变化情况。卡欧(Chow)方程形式复杂,所以很难用它来描述物理特性。第22页/共52页 因此,可将拉普拉斯逆变换表示成e 、e 。对于不同的C值,跟驰行驶两车的运动情况可分为四类:a)如果Ce-1(0.368),a00,b0=0,间距不发生波动,振幅呈指数衰减;b)如果 e-1 C/2,a0 0,b00,间距发生波动,振幅呈指数衰减;c)如果 C=/2,a0=0,b00,间距发生波动,振幅不变;d)如果C/2,a0 0,b00,间距发生波动,

12、振幅增大。根据以上结果,C值不同,跟驰车辆运动情况也就不同。要使跟随车辆间距不发生波动,必需满足C1/e。C继续增大时,间距发生波动且振幅急剧衰减。C/2时,振幅就会发生一定程度的衰减。第23页/共52页 关于波动行为的这些结果可以应用于跟驰的速度、加速度和车头间距。因此,当C1/e,即车头间距不发生波动的情况下,车速由U变到V车头间距变化量为:如果头车停车,其最终速度V=0,车头间距的总变化量为-U/。跟驰车为了避免与头车发生碰撞,车头间距最小值必须为U/。另外,在稳态交通流的限制下,为使车头间距尽可能小,应取尽可能大的值。第24页/共52页注:2车跟随1车行使,反应时间T=1.5s,C=e

13、-1,两车的初始速度均为u左图为利用计算机模拟的方法给出的相关运动参数曲线。C=e-1,由前面所讲可知,属第一类,即车头间距不发生波动的情况。头车先减速行驶,然后加速到起始速度,采用恒定的加速度和减速度。实线代表头车,虚线代表跟车。由于C 在车辆局部稳定的限制范围内,所以跟车的加速度和速度以及车头间距都没有发生波动。头车加速度波动方式及对跟驰车运动的影响头车加速度波动方式及对跟驰车运动的影响第25页/共52页 注:该图与图4.24.2具有相同的头车速度 不同C值对应的车头间距变化 左图给出了另外四种不同C C值的车头间距变化图。C C分别取阻尼波动、恒幅波动和增幅波动几种情况的值。当C=0.5

14、C=0.5和0.80.8时,属第二种情况,间距发生波动,振幅急剧衰减;C=1.57C=1.57(/2/2)时,属第三种情况,间距发生波动,振幅不变:当C=1.60C=1.60时,属第四种情况,间距发生波动,振幅增大。第26页/共52页与其他控制相关的局部稳定性 由于驾驶员无法对相对加速度或车头间距的高阶导数作出正确的估计,因而他们对这些变量缺乏敏感性。所以车辆跟驰方程采用如下形式:其中,m=0,1,2,3跟随车辆的加速度是车辆间距的m 阶导数。m=1时,为线形跟驰模型。当给定m值时,可以得到上述方程的解:当m为偶数时,方程无解。因此,局部稳定性仅适用于间距、相对速度等的奇数阶导数,最小为m=3

15、。结果显示,与车头间距变化相关的加速度是不稳定的。第27页/共52页二、渐进稳定性 渐进稳定性是在研究一列车队速度波动的傅立叶系数时得到的。一列长度为N N的车队的方程为:其中,n=0,1,2,3,Nn=0,1,2,3,N方程的求解依赖于一列车队中头车车速u u(t t)和参数和T T。无论车头间距为何初始值,如果发生振幅波动,那么车队后部的某一位置必定发生碰撞。方程的数值解可以确定碰撞发生的位置。第28页/共52页 C=T 0.50.52(一般取0.5)时,就可保证车辆的渐进稳定性。如下图所示,渐进稳定性的标准将两个参数确定的区域分成了稳定和不稳定两部分。渐进稳定性 可知,Te-1保证局部稳

16、定性的同时也可以保证渐进稳定性。第29页/共52页第四节 跟驰模型研究综述自20世纪50年代以来,国外的学者对车辆跟驰模型进行了大量、系统的研究,发表了众多的研究成果。主要可以分为以下几类:GM模型、安全距离模型、生理心理模型等。近年来,又涌现出来模糊推理模型和元胞自动机模型。第30页/共52页一、GM跟驰模型(线性和非线性模型)GM模型是从20世纪50年代后期逐渐发展起来的车辆跟驰模型。当初是在假设车辆在22.86m(75ft)以内未越车或变换车道的状况下,由驾驶动力学模型(Driving Dynamic Model)推导而来,并引入反应(t+T)灵敏度刺激(t)的观念。其中反应以后车的加速

17、度或减速度表示,刺激以后车与前车的相对速度表示,灵敏度则视模型的应用持性不同而有所差异。第31页/共52页优点:GM模型形式简单,物理意义明确,作为早期的研究成果,具有开创意义,许多后期的车辆跟驰模型研究都源于刺激一反应基本方程。缺陷:GM模型的通用性较差,这是因为:第一,跟驰行为非常易于随着交通条件和交通运行状态的变化而变化;第二,大量的研究和试验是在低速度和停停走走的交通运行状态中进行的,而这种状态的交通流不能很好地反映一般的跟驰行为。第32页/共52页二、安全距离模型安全距离模型也称防撞模型(Collidion Avoidance Models,简称CA模型)该模型最初由Kometani

18、和Sasaki提出,其最基本的关系并非GM模型刺激-反应关系,而是寻找一个特定跟驰距离(由经典牛顿运动定律推导出)。如果前车驾驶员做了一个后车驾驶员意想不到的动作,当后车与前车之间的跟驰距离小于某个特定的跟驰距离时,就有可能发生碰撞。第33页/共52页安全距离模型基本模型式中:参数。第34页/共52页Gipps对此模型进行了改进,提出如下模型:车辆n的驾驶员所愿意采用的最大加速度;车辆n的驾驶员所愿意采用的最大减速度;的效用尺寸,其值等于车身长度加停车间距;车辆n-1的驾驶员认为车辆n-1 会采用的最大减速度。车辆n上式右端共有两项:第一项由两个限制条件合并而成,即期望车速限制和由汽车动力特性

19、决定的加速度限制,当该项对大多数车辆起作用时,交通流处于自由行驶状态;第二项是防止碰撞限制,当它起作用时,交通流处于拥挤状态。第35页/共52页作用:安全距离模型在计算机仿真中有着广泛的应用。如英国交通部的SISTM模型,意大利、法国的SPACES模型,美国的INTRAS和CARSIM模型。日本也用此类模型进行仿真。特点:可以用一些对驾驶行为一般感性假设来标定模型。大多数情况只需知道驾驶员将采用的最大制动减速度,就能满足整个模型的需要。问题:避免碰撞的假设在模型的建立是合乎情理的,但与实际情况存在着差距;在实际的交通运行中,驾驶员在很多情况下并没有保持安全距离行驶。因此,当利用基于安全间距的车

20、辆跟驰模型进行通行能力分析时,很难与实际最大交通量相吻合。第36页/共52页三、模糊推理模型该类模型主要通过驾驶员未来的逻辑推理来研究驾驶行为。这类模型的最大特色是将模型的输入项分为几个相互部分重叠的模糊集,每个模糊集用来描述各项的隶属度。例如,一个模糊集可以用来描述或量化车头时距“太近”若车头时距小于0.5s,则“太近”这个模糊集的隶属度或真实度就为1;若车头时距大于2s,则“太近这个模糊集的隶属度或真实度就为0;中间的数值表示了真实度或隶属度的等级,一旦定义清楚隶属度的等级,就可以通过逻辑推理得到输出模糊集,如果近而且继续近那么就制动。第37页/共52页模糊推理模型的具体表达如下:如果x适

21、当,则如果x不适当,则x每减少一个等级,ai将减少0.3m/s2;x每增加一个等级,ai将增加0.3m/s2。式中:T反应时间,取1s;后车驾驶员希望在时间内能够跟上前车,取2.5s。模糊推理模型第38页/共52页讨论:基于模糊继理的车辆跟驰模型是近年来才发展起来且发展较快的车辆跟驰模型。该模型主要通过推理驾驶员未来的逻辑阶段来研究驾驶员的驾驶行为。核心仍是刺激反应关系。与传统GM模型相比,该模型具有局部稳定性。两个因素可能导致模型与实际有较大的出入:一是该模型认为能够精确地得出ai为 0.3m/s2;二是已经从线性模型中得知x对加速度的影响非常小。问题:该模型认为稳定跟驰距离仅与稳定跟驰状态

22、的车速有关而与初始跟驰距离和车速无关,这些都有值得商榷之处。模糊推理模型第39页/共52页四、生理心理模型 生理一心理模型也称反应点模型(Action Point Models)简称AP模型,也叫行为阈值模型。这类模型用一系列阈值和期望距离体现人的感觉和反应,这些界限值划定了不同的值域,在不同的值域,后车与前车存在不同的影响关系。特点:生理心理模型是一种跟驰决策模型(Car Following Decision Model)。第40页/共52页生理心理模型生理心理模型将车辆跟驰状态划分为三个阶段第一阶段,两车的速度差低于速度感知阈值,驾驶员仅仅通过对距离变化的感知来确定他是否处于逼近状态;第二

23、阶段,速度差超过阈值,驾驶员降低车速,从而使视角变化率维持在阈值或其附近;第三阶段,驾驶员在一个确保车辆驾驶和速度控制的车头时距下,尽量将相对速度保持为零。第41页/共52页生理心理模型w 观察目标的宽度 R 观察者与目标之间的距离;视角。一旦超过这个速度感知阈值,驾驶员将选择减速,使相对速度的感知不超过这个阈值。感知界限值模型:第42页/共52页在AP模型中,如何最终确定感知阈值是非常重要的,因为驾驶员将根据它来决定是加速、减速还是保持原速,直到突破某个阈值为止。Mcheals模型中划分跟驰状态的阈值是驾驶员的感知阈值。但是在实际中存在大量超过感知阈值而驾驶员未有所反应的事例。研究进展:19

24、74年,Wiedemann提出以行为阈值划分跟驰状态,并建立了一个行为阈值模型(Behavioral Threshold Model)。以后,Burnham和Bekey,Lee,Kumamoto,Frizsche及Zhang,Y.L分别建立了不同的行为阈值模型。第43页/共52页优点:充分考虑了驾驶员的生理、心理因素对驾驶行为的影响和制约及由此产生的不同驾驶行为,从建模方法上更接近实际情况,也最能描述大多数我们日常所见的驾驶行为。(在行为阈值模型中研究的最为深入,最符合实际驾驶行为的是Wiedemann建立的MISSION模型)缺点:模型的参数较多,子模型之间的相互关系比较复杂,且对于各种阈值

25、的调查观测比较困难。第44页/共52页五、元胞自动机模型 交通问题中的研究对象,如车辆和人都是不连续的,车流运动有很大的随机性和不确定性。元胞自动机(Cellular Automation)在模拟各种具有离散性和随机性的自然现象方面的应用非常广泛,由此启发人们用它来模拟交通问题。第45页/共52页1992年,Nagel和Schreckenberg提出了STCA模型。该模型将一条车道假设为具有L个格点的一维直线链,其上随机分布着N个粒子(车辆),平均密度=N/L。每个粒子只与前后紧邻的粒子发生相互作用,每个格点在时刻要么空着,要么被一个粒子占据。格点的长度是堵塞时车辆的最小车头间距。步长的设定是

26、任意的,通常为驾驶员的反应时间,即0.61.2s。每个粒子根据与邻居的相互作用情况分别处于自后向前的运动或静止状态中。驾驶员在驾驶过程中以其所能达到的最大速度行驶,只有在必须停止时,才会停止。第46页/共52页元胞自动机模型该模型可用如下运动规则表述:如果车辆前方的空格的格点数 则v以概率P减1,第47页/共52页元胞自动机模型STCA模型的缺陷为:车辆的速度是车头时距的函数,不同车辆的速度是相互独立的,而且驾驶员的反应时间等于步长,所以车辆的最小车头时距不会小于反应时间。Ning针对STCA模型的缺陷,提出了TOCA模型,在该模型中,将描述驾驶行为不确定性的参数P分解为Pac和Pdc两个参数

27、。第48页/共52页元胞自动机模型TOCA模型的规则如下如果vgap/th,且vgap,则v=gap如果vgap/th,且v0,则v以概率Pdc减1,即v=v+1,x=x+vth平均车头时距第49页/共52页作用:元胞自动机模型对交通系统的描述实践了种用离散化模型描述离散化问题的思想,避免了流动比拟下确定性方程的严格假设及求解离散化对真实信息的损失。缺陷:元胞自动机模型的假设与实际的驾驶行为还存在着较大的差距,如何将元胞自动机模型与交通实际联系起来,还需要做大量的工作。第50页/共52页参考文献阅读Edie L.C.Car-following and Steady-state Theory f

28、or Noncongested Traffic.Oper.Res.,1961,9(1)Pipes L A.Car Following Models and the Fundamental Diagram of Road Traffic.Transpn.Res.,1967,1(1)May A.D.,Jr.,and Keller E.M.Non-integer Car-following Models.Highw.Res,Rec,1967,199 Kikuchi Car following model based on a fuzzy inference system.1992Ozaki.Reaction and anticipation in car following behavior.In proceedings of the symposium on traffic and transportation theory.1993第51页/共52页谢谢您的观看!第52页/共52页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁