《弹性力学第六章有限元精选PPT.ppt》由会员分享,可在线阅读,更多相关《弹性力学第六章有限元精选PPT.ppt(133页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、弹性力学第六章有限元徐汉忠第一版2000/7弹性力学第六章有限元1第1页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元2References 参考书参考书徐芝纶,徐芝纶,弹性力学简明教程第六章。弹性力学简明教程第六章。高等教育出高等教育出版社。版社。华东水利学院华东水利学院,弹性力学问题的有限单元法弹性力学问题的有限单元法,水利,水利电力出版社。电力出版社。卓家寿,卓家寿,弹性力学中的有限元法弹性力学中的有限元法,高等教育出版社。,高等教育出版社。O.C.Zienkiewicz,The Finite Element Method,Third Edition,51.818,Z6
2、6K.C.Rockey and so on,The Finite Element Method,Second Edition,51.818,R682-2第2页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元3Introduction-1 导引导引-1The finite element method is an extension of the analysis techniques(matrix method)of ordinary framed structures.有限元法是刚架结构分析技术的扩充。有限元法是刚架结构分析技术的扩充。The finite element m
3、ethod was pioneered in the aircraft industry where there was an urgent need for accurate analysis of complex airframes.有限元法首先应用于飞机工业。有限元法首先应用于飞机工业。第3页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元4Introduction-2The availability of automatic digital computers from 1950 onwards contributed to the rapid development
4、of matrix methods during this period.从从 1950以后以后 数字计算机的出现使矩阵位移法迅速数字计算机的出现使矩阵位移法迅速发展。发展。第4页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元5Introduction-3The finite element method was developed rapidly from 1960 onwards and known in China from 1970 onwards.从从 1960以后以后 有限元法迅速发展。有限元法迅速发展。1970以后以后 传入我传入我国。国。第5页,此课件共133
5、页哦徐汉忠第一版2000/7弹性力学第六章有限元6Introduction-4In a continuum structure,a corresponding natural subdivision does not exist so that the continuum has to be artificially divided into a number of elements before the matrix method of analysis can be applied.连续结构不存在自然的单元,须人为划分为单元连续结构不存在自然的单元,须人为划分为单元第6页,此课件共133页
6、哦徐汉忠第一版2000/7弹性力学第六章有限元7Introduction-5The artificial elements,which are termed finite elements or discrete elements,are usually chosen to be either rectangular or triangular in shape.单元通常取为三角形或矩形。单元通常取为三角形或矩形。第7页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元86.1 Fundamental quantities and fundamental equations ex
7、pressed by matrix6.1 基本量和基本方程的矩程表示基本量和基本方程的矩程表示Body force 体力体力:p=X YT Surface force 面力面力:p=X YTDisplacement 位移位移:f=u vTStrain 应变应变:=x y rxy T Stress 应力:应力:=x y xy TGeometrical equations Physical equationsvirtual work equations第8页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元9Geometrical Equation 几何方程几何方程 x u/x /x
8、 0 u =y =v/y =0 /y v =Lf rxy u/y+v/x /y /x x /x 0 =y L=0 /y f=u vT rxy /y /x =Lf第9页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元10Physical Equation for Plane Stress Problem 平面应力问题的物理方程平面应力问题的物理方程 x x+y 1 0 x y =E/(1-2)y+x =E/(1-2)1 0 y xy rxy(1-)/2 0 0 (1-)/2 rxy x 1 0 x =y D=E/(1-2)1 0 =y xy 0 0 (1-)/2 rxy =D 第
9、10页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元11Virtual Work Equation 虚功方程虚功方程 状态状态1:p=X YT p=X YT =x y xy T状态状态2:f*=u*v*T *=L f*虚功方程虚功方程:f*Tpdx dy t+f*Tpds t =*T dx dy t注:注:f*Tp=u*v*X =X u*+Y v*Y *T =x*y*rxy*x=x x*+y y*+xy rxy*y xy第11页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元126.2 Basic Concepts about Finite Element M
10、ethod6.2 有限单元法的概念有限单元法的概念有限单元法的计算模型有限单元法的计算模型1.The continuum structure is idealized as a structure consisting of a number of individual elements connected only at nodal points.连续的结构理想化为仅由在结点相连的连续的结构理想化为仅由在结点相连的单元组成。单元组成。第12页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元132.Displacement boundary:place a bar suppor
11、t at the node where displacement is zero.位移边界:结点位移为零处,设置连杆位移边界:结点位移为零处,设置连杆.3.The system of external loads acting on the actual structure has to be replaced by an equivalent system of forces concentrated at the element nodes.This can be done by using the principle of virtual work and equating the wo
12、rk done by the actual loads to the work done by the equivalent nodal loads.外力按静力等效的原则移置到结点上外力按静力等效的原则移置到结点上第13页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元14第14页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元15第15页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元16补充:关于离散补充:关于离散 About Discretization In reality Elements are connected together
13、along their common boundaries.Here it is assumed that these elements are only interconnected at their nodes.实际:单元间相连实际:单元间相连-假定:只结点相连假定:只结点相连第16页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元17关于离散关于离散-2However,in the finite element method,the individual elements are constrained to deform in specific patterns.然而,
14、单元变形按指定模式然而,单元变形按指定模式.第17页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元18关于离散关于离散-3Hence,although continuity is only specified at the nodal points,the choice of a suitable pattern of deflection for the elements can lead to the satisfaction of some,if not all,of the continuity requirements along the sides of adja
15、cent elements.位移模式使相连单元位移连续得某些满位移模式使相连单元位移连续得某些满足足第18页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元19关于离散关于离散-4Hence,as stated by Clough,finite elements are not merely pieces cut from the original structure,but are special types of elastic elements constrained to deform in specific patterns such that the overall
16、 continuity of the assemblage tends to be maintained第19页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元206.3 Displacement pattern and convergence criteria6.3 位移模式和收敛性位移模式和收敛性 Fig.1 shows the typical triangular element with nodes ijm numbered in an anti-clockwise order.Y m图图1为一典型的三角形单元为一典型的三角形单元,i 结点结点 ijm 逆钟向编号逆钟向
17、编号-x正向到正向到 jy正向正向。Fig.1 x Element with nodes numbered 单元的结点编号单元的结点编号第20页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元21 Displacement pattern 位移模式位移模式 The displacement representation is given by the two linear polynomials with six constants 位移用有位移用有6个常数的线性多项式表示个常数的线性多项式表示 u=1+2x+3y (1)v=4+5x+6y (2)第21页,此课件共133页哦徐
18、汉忠第一版2000/7弹性力学第六章有限元22Since these displacements are both linear in x and y,displacement continuity is ensured along the interface between adjoining elements for any identical nodal displacement.因为位移在单元上均为线性,相邻单元交界面上因为位移在单元上均为线性,相邻单元交界面上的位移连续性因同一结点位移相同而得到保证。的位移连续性因同一结点位移相同而得到保证。Displacement continui
19、ty 位移连续性位移连续性第22页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元23u=1+2x+3y (1)Substitution of the nodal coordinates into equation(1)yields:结点坐标代入方程(结点坐标代入方程(1)得)得:ui=1+2 xi+3 yi uj=1+2 xj+3 yj (3)um=1+2 xm+3 ym ui=u(xi,yi)uj=u(xj,yj)um=u(xm,ym)To obtain 1 2 3 求求 1 2 3-1 第23页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元24u=1+2
20、x+3y (1)Substitution of the nodal coordinates into equation(1)yields:结点坐标代入方程(结点坐标代入方程(1)得)得:ui 1 xi yi 1 uj =1 xj yj 2 (3)um 1 xm ym 3 ui=u(xi,yi)uj=u(xj,yj)um=u(xm,ym)To obtain 1 2 3 求求 1 2 3-1 第24页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元25Solving eq.(3),we obtain:解方程(解方程(3)得)得 1 ui xi yi 1 ui yi 1 xi ui
21、T 2 =1/2A uj xj yj 1 uj yj 1 xj u j 3 um xm ym 1 um ym 1 xm um 1 xi yi 1 xj yj =2A (4)1 xm ym The above expression is ensured when the node ijm are in an anti-clockwise order.(A-area of triangle ijm 单元面积单元面积)当结点逆钟向编号当结点逆钟向编号 x正向到正向到 y正向正向 时,上式成立时,上式成立To obtain 1 2 3 求求 1 2 3-2 第25页,此课件共133页哦徐汉忠第一版20
22、00/7弹性力学第六章有限元26Substitution of 1 2 3 into eq.(1)yields:将将 1 2 3代入方程(代入方程(1)得)得:ui xi yi 1 ui yi 1 xi ui u =1/2A uj xj yj +1 uj yj x+1 xj u j y um xm ym 1 um ym 1 xm um 1 x y 1 x y 1 x y =1/2A 1 xj yj ui+1 xm ym uj+1 xi y i um 1 xm ym 1 xi yi 1 xj yj u =Ni(x,y)ui+Nj(x,y)uj+Nm(x,y)um v =Ni(x,y)vi+Nj(
23、x,y)vj+Nm(x,y)vm第26页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元27In which:1 x y 1 xi yi 其中:其中:Ni(x,y)=1 xj yj 1 xj yj 1 xm ym 1 xm ym =(ai+bix+ciy)/(2A)(i,j,m)xj yj 1 yj ai=xm ym =xjym-xmyj bi=-1 ym =yj-ym 1 xj ci=1 xm =xm-xj (i,j,m)1 xi yi 2A=1 xj yj 1 xm ym第27页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元28Ni is called e
24、lement displacement function or element shape function.Ni 叫做单元位移函数或单元形函数。叫做单元位移函数或单元形函数。Ni(xi,yi)=1 Ni(xj,yj)=0 Ni(xm,ym)=0 (i,j,m)1 x y 1 xi yi Ni(x,y)=1 xj yj 1 xj yj 1 xm ym 1 xm ym第28页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元29 u =Ni(x,y)ui+Nj(x,y)uj+Nm(x,y)um v =Ni(x,y)vi+Nj(x,y)vj+Nm(x,y)vmf =N e f=u v
25、T nodal displacement matrix:结点位移列阵结点位移列阵:e=ui vi uj vj um vmTshape function matrix:形函数矩阵:形函数矩阵:Ni 0 Nj 0 Nm 0 N=0 Ni 0 Nj 0 Nm 有限个自由度问题有限个自由度问题 第29页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元30Convergence Criteria 收敛准则收敛准则-1Criterion 1:The displacement function chosen should be such that it does not permit str
26、aining of an element to occur when the nodal displacements are caused by a rigid body displacement.准则准则1:位移模式必须反映单元的刚体位位移模式必须反映单元的刚体位移。移。第30页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元31Convergence Criteria 收敛准则收敛准则-2Criterion 2:The displacement function has to be taken so that the constant strain(constant fir
27、st derivative)could be observed.准则准则2:位移模式必须反映单元的常量应:位移模式必须反映单元的常量应变变。第31页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元32Convergence Criteria 收敛准则收敛准则-3Criterion 3:The displacement function should be so chosen that the strains at the interface between elements are finite(even though indeterminate and not equal).
28、准则准则3:位移模式必须使单元公共边上的位移模式必须使单元公共边上的应变在不同单元中为常量。应变在不同单元中为常量。第32页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元33Convergence Criteria 收敛准则收敛准则-3准则准则3:位移模式必须使位移处处连续位移模式必须使位移处处连续.(1)单元内位移连续单元内位移连续.(2)单元公共边上的位移连续。单元公共边上的位移连续。第33页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元34Further discussion about criteria-1 准则的进一步讨论准则的进一步讨论-1Cri
29、terion 3 implies a certain continuity of displacements between elements-In the case of strains being defined by first derivative,the displacements only have to be continuous between elements.That is C0 continuity is sufficient第34页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元35Further discussion about criteria-2
30、准则的进一步讨论准则的进一步讨论-2Criterion 3 implies a certain continuity of displacements between elements.-In the plate and shell problems,the strains are defined by second derivatives of deflections,first derivatives of deflections have to be continuous between elements.第35页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元36Fur
31、ther discussion about criteria-1,2 准则的进一步讨论准则的进一步讨论-1,2准则准则3 意味着对单元间位移的连续性有一定要求。意味着对单元间位移的连续性有一定要求。-应变是位移的一阶导数的情况,应变是位移的一阶导数的情况,例如弹性力学平例如弹性力学平面问题,仅要求单元之间位移连续。称为面问题,仅要求单元之间位移连续。称为C0连续性连续性。-板和壳问题,应变是位移的二阶导数,要求板和壳问题,应变是位移的二阶导数,要求位移的一阶导数在单元间连续位移的一阶导数在单元间连续,C1 连续性连续性。第36页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元3
32、7Further discussion about criteria-3 准则的进一步讨论准则的进一步讨论-3Criterion 1 and 2 are necessary conditions.Criterion 3 is the sufficient condition.准则准则1和和2是收敛的必要条件,是收敛的必要条件,准则准则3是是充分条件。充分条件。第37页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元38 准则准则1和和2是收敛的必要条件,是收敛的必要条件,不满足不满足一定不收敛一定不收敛.在满足准则在满足准则1和和2的必要条件的前提下的必要条件的前提下,再再满足
33、准则满足准则3,一定收敛。一定收敛。-协调元协调元在满足准则在满足准则1和和2的必要条件的前提下的必要条件的前提下,不不满足准则满足准则3-可能收敛可能收敛(非协调元非协调元,例薄板例薄板弯曲问题弯曲问题),可能不收敛可能不收敛.第38页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元39Further discussion about criteria-4 准则的进一步讨论准则的进一步讨论-4u=1+2x+3y =1+2x-y(5-3)/2+y(5+3)/2 v=4+5x+6y =4+6y+x(5-3)/2+x(5+3)/2刚体位移刚体位移 u=-y+u0 v=x+v0u0=
34、1 v0=4 =(5-3)/2 反映刚体位移反映刚体位移 x=2 y=6 rxy=5+3 反映常量应变反映常量应变第39页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元40Further discussion about criteria-4 准则的进一步讨论准则的进一步讨论-4u=1+2x+3y =1+2x-y(5-3)/2+y(5+3)/2 v=4+5x+6y =4+6y+x(5-3)/2+x(5+3)/2位移在单元内部连续位移在单元内部连续,在单元公共边上连续在单元公共边上连续,满足准则满足准则3第40页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元4
35、16.4 Strain,Stress and Stiffness 应变,应力和劲度应变,应力和劲度 =Lf=LN e=B e =B e /x 0 Ni 0 Nj 0 Nm 0 B=LN=0 /y 0 Ni 0 Nj 0 Nm /y /x=Bi Bj Bm A.Strain 应变应变第41页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元42 /x 0 Ni 0 Nj 0 Nm 0 B=LN=0 /y 0 Ni 0 Nj 0 Nm /y /x =Bi Bj Bm Ni/x 0 bi 0Bi=0 Ni/y =0 ci /(2A)Ni/y Ni/x ci biThe B matrix
36、 is independent of the position within the element,and hence the strains are constant throughout it.应变在单元中为常量。应变在单元中为常量。第42页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元43B.Stress 应力应力 =D =DB e=S e S=DB=DBi DBj DBm=Si Sj Sm 1 0 bi 0 Si=DBi=E/(1-2)1 0 1/2A 0 ci 0 0 (1-)/2 ci bi bi ci=E/2A(1-2)bi ci (1-)ci/2 (1-)b
37、i/2 S-Elasticity matrix;弹性矩阵,应力转换矩阵弹性矩阵,应力转换矩阵 第43页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元44C.Stiffness 劲度劲度C.1 Element Nodal Force Matrix 单元结点力列阵单元结点力列阵 Fe=Ui Vi Uj Vj Um VmTElement nodal forces are the internal forces between elements and nodes.It is considered positive or negative according as it acts i
38、n the positive or negative direction of the coordinate axis when it acts on the element.单元结点力:单元和结点间相互作用力,作用在单元结点力:单元和结点间相互作用力,作用在单元上时,沿坐标正向为正单元上时,沿坐标正向为正.作用在作用在结点上结点上时,沿坐标时,沿坐标负向为正负向为正.第44页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元45 Vi2 Y1 Ui2 i m U1=Uj1+Ui2 1 X1 Uj1 Vj1 j y j Um m i Ui Vm Vi x V1=Vj1+Vi2单元
39、结点力列阵单元结点力列阵 Fe=UFe=Ui i V Vi i U Uj j V Vj j U Um m V Vm mTT整体整体结点力列阵结点力列阵 F=UF=U1 1 V V1 1 U U2 2 V V2 2 U U3 3 V V3 3 U U4 4 V V4 4 TT 作用在作用在结点上结点上时,沿坐标负向为正时,沿坐标负向为正.第45页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元46 C.Stiffness 劲度劲度C.2 The relation between the element nodal force and nodal displacementsIsol
40、ate an element from the structure.Since body forces and surface forces are moved to the nodes,only element nodal forces are the external forces acting on the element.Impose an arbitrary virtual nodal displacement.The work done by the nodal forces is equal to the work done by the stresses.第46页,此课件共13
41、3页哦徐汉忠第一版2000/7弹性力学第六章有限元47C.Stiffness 劲度劲度C.2 单元结点力和单元结点位移列阵的关系单元结点力和单元结点位移列阵的关系将单元取出作为隔离体,因为体力面力已移将单元取出作为隔离体,因为体力面力已移置到结点上,单元上结点力为外力,应力为置到结点上,单元上结点力为外力,应力为内力。施加一个虚位移,结点力作功等于应内力。施加一个虚位移,结点力作功等于应力作功可导得力作功可导得 单元结点力和单元结点位移单元结点力和单元结点位移的关系的关系第47页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元48C.2-continue We=(*e)T Fe
42、 =u=ui i v vi i u uj j v vj j u um m v vm m U Ui i V Vi i U Uj j V Vj j U Um m V Vm m=U=Ui iu ui i+V+Vi iv vi i+U+Uj ju uj j+V+Vj jv vj j+U+Um mu um m+V+Vm mv vm m 第48页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元49C.2-continue WI=*T dx dy t=(*e)T BTDBdx dy t e 注:注:*T =x*y*rxy*x =x x*+y y*+xyrxy*y xy*=B*e *T=(*e
43、)T BT =DB e第49页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元50C.2-continue We=(*e)T Fe WI=*T dx dy t=(*e)T BTDBdx dy t e We=WI (*e)T Fe=(*e)T BTDBdx dy t e Since *e is arbitrary,we have Fe=BTDBdx dy t e=k e k=BTDBdx dy t=BTDBAt k-element stiffness matrix.单元劲度矩阵单元劲度矩阵第50页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元51C.3 The
44、Explicit Form for Element Stiffness Matrix C.3 单元单元劲度矩阵的表达式劲度矩阵的表达式k=BTDBdx dy t=BTDBAt BiT k=BjT D Bi Bj BmAt BmT BiT D Bi BiT D Bj BiT D Bmk=At BjT D Bi BjT D Bj BjT D Bm BmT DBi BmT DBj BmT D Bm第51页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元52 kii kij kimk=kji kjj kjm krs=BrTDBs (r,s=i,j,m)kmi kmj kmm brbs+
45、(1-)crcs/2 brcs+(1-)crbs/2 krs=Et/4(1-2)A crbs+(1-)brcs/2 crcs+(1-)brbs/2(r,s=i,j,m)(plane stress problem 平面应力问题平面应力问题)krsxx krsxykrs=krsyx krsyy第52页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元53C.4 The Physical Explanation for Element Stiffness matrix C.4 单元单元劲度矩阵的物理意义劲度矩阵的物理意义Fe=k e Ui kiixx kiixy kijxx kijxy
46、 kimxx kimxy ui Vi kiiyx kiiyy kijyx kijyy kimyx kimyy vi Uj =kjixx kjixy kjjxx kjjxy kjmxx kjmxy uj Vj kjiyx kjiyy kjjyx kjjyy kjmyx kjmyy vj Um kmixx kmixy kmjxx kmjxy kmmxx kmmxy um Vm kmiyx kmiyy kmjyx kmjyy kmmyx kmmyy vm kijyx-j结点结点x方向发生单位位移在方向发生单位位移在i结点结点y方向的结点力方向的结点力第53页,此课件共133页哦徐汉忠第一版2000/
47、7弹性力学第六章有限元54 kijyx-j结点结点x方向发生单位位移在方向发生单位位移在i结点结点y方向的结点力方向的结点力方向方向 kijyx局部结点号局部结点号 结果结果 原因原因 第54页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元55C.5 The Characteristics of the Element Stiffness Matrix C.5 单元单元劲度矩阵的特点劲度矩阵的特点 1.对称矩阵对称矩阵2.每一行元素之和为零每一行元素之和为零.Assume e=ui vi uj vj um vmT=1 1 1 1 1 1T Fe=k e=03.每一列元素之和为
48、零每一列元素之和为零.4.k为奇异矩阵。为奇异矩阵。|k|的各行元素乘的各行元素乘1后加到第一行,行列后加到第一行,行列式值不变,由于第一行元素全为零,故式值不变,由于第一行元素全为零,故|k|=05.k的元素的数值取决于单元形状,大小,方位和弹性常的元素的数值取决于单元形状,大小,方位和弹性常数,不随单元的平行移动或作数,不随单元的平行移动或作n 的转动而改变。的转动而改变。n为为正整正整数。数。第55页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元56转动转动 ,k不变不变 m j i i j m 第56页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元5
49、7 kii kij kimk=kji kjj kjm krs=BrTDBs (r,s=i,j,m)kmi kmj kmm brbs+(1-)crcs/2 brcs+(1-)crbs/2 krs=Et/4(1-2)A crbs+(1-)brcs/2 crcs+(1-)brbs/2(r,s=i,j,m)(plane stress problem 平面应力问题平面应力问题)krsxx krsxykrs=krsyx krsyy第57页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元58In which:1 x y 1 xi yi 其中:其中:Ni(x,y)=1 xj yj 1 xj y
50、j 1 xm ym 1 xm ym =(ai+bix+ciy)/(2A)(i,j,m)xj yj 1 yj ai=xm ym =xjym-xmyj bi=-1 ym =yj-ym 1 xj ci=1 xm =xm-xj (i,j,m)1 xi yi 2A=1 xj yj 1 xm ym第58页,此课件共133页哦徐汉忠第一版2000/7弹性力学第六章有限元596.5 Element Load Matrix 单元荷载列阵单元荷载列阵1.Element load matrix Re=Xi Yi Xj Yj Xm YmT It is positive when it acts in the posi