《核反应堆工程核反应堆工程 (10).ppt》由会员分享,可在线阅读,更多相关《核反应堆工程核反应堆工程 (10).ppt(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Nuclear Engineering ReactorIntroduction of Small Modular Reactors Overview1DefinitionandStrategyofSMRsCurrentStatusofSMRs23IntroductiontoSMRs4IncentivesandChallenges5FutureTendsnWhat are Small Modular Reactors(SMRs)n“Small”referstothereactorpowerrating.Whilenodefinitiverangeexists,apowerratingfromap
2、proximately10to300MWehasgenerallybeenadoptedn“Modular”refers to the unit assembly of the nuclear steam supplysystem(NSSS)which,whencoupledtoapowerconversionsystemorprocessheatsupplysystem,deliversthedesiredenergyproduct1 Definition1 StrategynEarlyreactorsforcommercialproductionofelectricityweresmall
3、togainconstructionandoperatingexperiencetomovetolargerratingsnNow,small units are multipurpose provide electric power for remote,vulnerablemilitarysites;propulsionofsubmarines,shipsandaircraftnSingleormultiplemodulesreactorscouldreducedcapitalinvestmentsandcapitalinvestmentratesnThe further economic
4、 premise is that cost can be made sufficientlycomparabletothatofexistinglarge-sizedplantsbyemployingastrategyofeconomyofnumbers(manufactureofmultipleidenticalmodules)andsimplificationofdesignversusthetraditionaleconomyofscaleWhy SMRs 2 Current StatusnTheUS,Russia,SouthKorea,China,Japan,Argentina,and
5、Franceallhaveconceptsunderdesignandcomponent/systemtestingisunderwayinseveralcases.ThemostadvancedsituationsareintheUS,RussianandChineseprograms.nSMRsbefore2018Land-basedwater-cooledSMRsHighTemperatureGasCooledSMRsFastNeutronSpectrumSMRsMoltenSaltSMRsOtherSMRs2 Current StatusDesignOutput MWeTypeCoun
6、try StatusDesignOutput MWeTypeCountry StatusWaterCooledSMRs(LandBased)FastNeutronSpectrumSMRsACP100100PWRChinaBasicDesign4S10LMFRJapanDetailedDesignCAP200150/200PWRChinaConceptualDesign LFR-AS-200200LMFRLuxembourgPreliminaryDesignSMART100PWRKoreaCertifiedDesignSVBR-100100LMFRRussianDetailedDesignVK-
7、300250BWR RussianDetailedDesignMoltenSaltSMRsUK-SMR443PWRUKMatureConceptIMSR190MSRCanadaBasicDesignNuScale5012PWRUSAUnderDevelopmentThorCon250MSRInternationalConsortiumBasicDesignSMR-160160PWRUSAPreliminaryDesignFUJI200MSRJapanExperimentalPhaseHighTemperatureGasCooledSMRsLFTR250MSRUSAConceptualDesig
8、nHTR-PM210HTGRChinaUnderConstruction Mk1PB-FHR100MSRUSAPre-ConceptualDesignGTHTR300300HTGRJapanBasicDesignOtherSMRsGT-MHR285HTGR Russian PreliminaryDesigneVinci0.215HeatPipeUSAUnderDevelopmentMorethan55inIAEAbookletsOverview3IntroductiontoSMRsLightwater-cooled(PWR)Light-water-cooled(BWR)LeadcooledSo
9、diumcooledGascooledHeavy-water-cooled3.23.13.43.33.53.6Moltensalt3.73.1 ACP100ACP100pTheACP100isanintegratedPWRdesigndevelopedbyChina.pBasedonexistingPWRtechnologyadaptingverifiedpassivesafetysystemstocopewiththeconsequencesofaccidentevents.ParametersValueElectricalcapacity125MWeThermalcapacity385MW
10、tSteamgenerator16OTSGsConfigurationIntegralSystempressure(MPa)15PowerconversionIndirectRankineFuel(enrichment)UO2(200MWeThermalcapacity660MWtSteamgeneratorVerticalU-tubetypeSystempressure(MPa)15.5Fuel(enrichment)UO2(4.2%)Refuelingcycle24monthsDesignlife60years3.1 CAP200 CAP200canbeusedasasupplementt
11、olargePWRsandisdesignedformultiple applications,such as nuclear cogeneration and replacement ofretiredfossilpowerplantsinurbanareasDesign PhilosophyTarget ApplicationCompared with large PWRs,CAP200 has several advantages such ashigher inherent safety,lower frequency of large radioactivity release,lo
12、ngertimewithoutoperatorintervention,smallerenvironmentalimpact,lowersiterestrictions,shorterconstructionperiodandsmallerfinancingscaleaswellaslowerfinancialrisk.3.1 CAP200 CAP200adoptspassivesafetysystemswhichtakeadvantageofnaturalforcessuchasnaturalcirculation,gravityandcompressedairtomakethesystem
13、s work,offering improvements for plant in simplicity,safety,O&M,availabilityandinvestmentprotection.No active components such as pumps,fans and other machinery areused.Afewsimplevalvesalignandautomaticallyactuatethepassivesafetysystems.Thepassivesafetysystemsaredesignedtomeetcriteriaofsinglefailure,
14、independence,diversity,multiplicity.Safety Features3.1 NuScale design pCommercializeanSMRdesigndevelopedbyOregonStateUniversityandtheINLANuScaleplantcanbescaledtoaccommodateupto12modulesEachmoduleproduces50MWe(gross)NuScaleParametersValueElectricalcapacity50MWeThermalcapacity160MWtSteamgeneratorHeli
15、cal(2)Configuration IntegralOutlettemperature 300 PowerconversionIndirectRankineFuel(enrichment)UO2(5%)Refuelingcycle24monthsDesignlife60years3.1 NuScale design ThesharedpoolistheultimateheatsinkforresidualheatremovalAfail-safeemergencycorecoolingsystemcanprovideanunlimitedpost-accidentgraceperiodwi
16、thnooperatoraction,noACorDCpower,andnomake-upwaterEachmodulehasanindependentskid-mountedturbine-generatorsetforpowerconversionandcancontinuetooperatewhileothermodulesarebeingrefueledThereactorpressurevesselisimmersedinabelow-gradepoolsharedbyallmodulesUnlimitedcopingtimeforcorecoolingwithoutACorDCpo
17、wer,wateraddition,oroperatoraction Specific Design Features Safety designOverview3IntroductiontoSMRsLightwater-cooled(PWR)Light-water-cooled(BWR)LeadcooledSodiumcooledGascooledHeavy-water-cooled3.23.13.43.33.53.6Moltensalt3.7VK-300(NIKIET,RussianFederation)3.2 VK-300pInnovativepassiveBWRbasedonopera
18、tingprototypeandwell-developedequipmentParametersValueElectricalcapacity250MWeThermalcapacity750MWtSteamgeneratorExternal(4)Coolant/moderatorLightwaterConfiguration Compact loopSystempressure(MPa)6.9Coreinlet/exittemperatures()190/285PowerconversionIndirectRankineFuel(enrichment)UO2pellet/hexahedron
19、Refuelingcycle72monthsDesignlife60years3.2 VK-300DesignoftheVK-300isbasedontheprovenWWERtechnologiesandtakesovertheoperatingexperienceoftheVK-50.Aimingtoachieveimprovedeconomicsthroughsystemsimplification.Thereactor core is cooled by natural circulation of coolant during normaloperationandinemergenc
20、ycondition.Design Philosophy Target ApplicationVK-300reactorfacilityisspeciallyorientedtotheeffectiveco-generationelectricityandheatfordistrictheatingandforseawaterdesalinationhavingexcellentcharacteristicsofsafetyandeconomics.3.2 VK-300nInacogenerationplantwithVK-300reactorsteamgoesdirectlyfromreac
21、tortoaturbine.nAfterpassingseveralstages,somesteamisextractedfromtheturbineandsenttotheprimarycircuitofthedistrictheatsupplyortotheseawaterdesalinationfacility.nHeatfromthesecondarycircuitofthedistrictheatfacilityissuppliedtoconsumers.Thecircuitpressuresarechosensoastoexcludepossibilityofradioactivi
22、tytransporttotheconsumercircuit.Nuclear Steam Supply System3.2 VK-300InnovativefeatureoftheVK-300projectistheapplicationofametallinedprimarycontainment(PC)ofreinforcedconcrete.ThePChelpstoprovidesafety assurance economically and reliably using structurally simple,passivesafetysystemsThe residual hea
23、t is passively removed from the reactor by steamcondenserslocatedinthePCaroundthereactorthatarenormallyfloodedwiththeprimarycircuitwaterAtthesametimethepowerunitdesignstipulatesthatthewholepowerunitwillbewithinaleak-tightenclosure(thesecondarycontainment).Safety Features3.2 VK-300The Emergency Coold
24、own Tanks contain the water inventory foremergencyreactorfloodingandcorecoolingduringsteamorwaterlineruptureswithinthePCS.DuringaLOCA,thesteam-airmixturegoesviadischargepipelinesfromthe containment to the ECTs where it is condensed.As a result,acirculationcircuitoftheECTreactorPCSECTisformedanditsfu
25、nctionensureslong-termpassivecoolingofthereactor.Emergency Core Cooling System Containment System (PCS)ThePCShelpstosolvethesafetyassuranceproblemeconomicallyandreliablyusing structurallysimplepassive safetysystems.The PCS israthersmall,withabout2000cubicmeters AHWR-300-LEU3.3 AHWR-300-LEUpDeveloped
26、bytheBhaBhaAtomicResearchCenter(BARC)pHeavywaterforneutronmoderationpLightwaterastheprimarycoolantParametersValueElectricalcapacity304MWeThermalcapacity920MWtSteamgeneratorSteamdrumConfigurationPressuretubeOutlettemperature288CPowerconversionDirectRankineRefuelingcycleContinuousDesignlife100years3.3
27、 AHWR-300-LEUThefuelbundlesarecontainedinverticalpressuretubechannels.TheUandPucontentinthemixed-oxidefuelismaintainedbelow5%.NaturalcirculationoftheprimarycoolantisusedwithadirectRankinecycleforpowerconversion.Thesteam/watermixturethatexitsthecoreiscirculatedtoanexternalsteamseparatordrumwherethest
28、eamisdirectedtotheturbineandthewatercondensateisreturnedtothefeedwaterheader.Specific Design Features Target ApplicationAHWR-300-LEUwillbeusedinco-generationmodeandproduce2400m3/dayofpotablewaterbyextractingaportionofthesteamfromthelowpressureturbine.3.4 GT-MHR ParametersValueElectricalcapacity288Mw
29、eThermalcapacity600MWtModeratorGraphitePrimarycoolantHeliumConfiguration Prismatic Systempressure(MPa)7.2Coreinlet/exittemperatures()490/850Power conversionDirect Brayton Fuel(enrichment)LEUorWPuRefuelingcycle25monthsDesignlife60yearsGT-MHROKBMAfrikantovnTheGasTurbineModularHeliumReactor(GT-MHR)coup
30、lesanHTGRwithaBraytonpowerconversioncycle3.4 GT-MHR Design Philosophy Theuseofthegas-turbinecycleapplicationintheprimarycircuitleadstoaminimumnumberofreactorplantsystemsandcomponents.TheGT-MHRsafetydesignobjectiveistoprovidethecapabilitytorejectcoredecayheatrelyingonlyonpassive(natural)meansofheattr
31、ansferwithouttheuseofanyactivesafetysystems.Target ApplicationTheGT-MHRcanproduceelectricityathighefficiency(approximately48%).Asitiscapableofproducinghighcoolantoutlettemperatures,itcanalsoefficientlyproducehydrogenbyhightemperatureelectrolysisorthermochemicalwatersplitting.3.4 GT-MHR Reactor Core
32、and Fuel CharacteristicsCoatedparticlefuelisused.ThousandsofcoatedparticlesandgraphitematrixmaterialaremadeintoafuelcompactwiththousandsofcompactsinsertedintothefuelchannelsoftheHexagonalPrismgraphiteblocksorfuelassemblies.The coated particles will contain almost all fission products withtemperature
33、supto1600.ThestandardfuelcycleforthecommercialGTMHRutilizeslowenricheduranium(LEU)inaoncethroughmodeThe GT-MHR show good proliferation resistance characteristics.Itproduces less total plutonium and239Pu(materials of proliferationconcern)perunitofenergyproduced.3.4 GT-MHR Safety Features nThe design
34、features,which determine the inherent safety and ensurethermal,neutronic,chemicalandstructuralstabilityofthereactorunit,arethefollowing:(1)Usingofheliumcoolant,heliumischemicallyinert,itdoesnotaffectedbyphasetransformations,doesnotdissociate,isnotactivatedand has good heat transfer properties,does n
35、ot react with fuel,moderatorandstructuralmaterials.(2)Thetemperatureandpowerreactivitycoefficientsarenegativethatprovidesthereactorsafetyinanydesignandaccidentconditions.3.4 GT-MHR Safety Features(3)Core and reflector structural material is high-density reactorgraphite with substantial heat capacity
36、 and heat conductivity andsufficient mechanical strength that ensures core configurationpreservationunderanyaccident(4)Nuclearfuelintheformofcoatedfuelparticleswithmultilayerceramiccoatings,whichretainintegrityandeffectivelycontainfissionproductsunderhighfuelburnupandhightemperaturesHTR-PM3.4 HTR-PM
37、 Pebble-bed-typeHigh-temperature,Helium-cooledreactorParametersValueElectricalcapacity105MWeThermalcapacity250MWtSteamgeneratorHelicalModeratorGraphitePrimarycoolantHeliumOutlettemperature 750PowerconversionIndirectRankineFuel(enrichment)TRISO-coatedUO2(8.5%)ReactivitycontrolRods,absorberballsRefuel
38、ingcycleContinuousDesignlife40yearsThe3mdiameterby11mtallcoreregionrepresentsatallgraphitehoppercontaining420000randomlypackedsphericalfuelelements.Thegraphiteblockreflectorthatdefinesthecoreregioniscontainedwithina57mdiameterby25mtallsteelpressurevessel.Thefuelelementsmigratedownwardthroughthecorea
39、sspheresaremovedfromthecentraldischargechannelinthebottomreflectorandoptionallyreinsertedatthetopofthecoreifmaximumburnuphasnotbeenachieved.Theheliumcoolantflowsupwardthroughthesidereflectorandthendownwardthroughthecoreregionbeforeflowingthroughacross-ducttothehelium/watersteamgeneratorcontainedinas
40、eparatesteelpressurevessel.3.4 HTR-PM StructuralFeaturesOperatingCharacteristicOverview3IntroductiontoSMRsLightwater-cooled(PWR)Light-water-cooled(BWR)LeadcooledSodiumcooledGascooledHeavy-water-cooled3.23.13.43.33.53.6Moltensalt3.73.5 4S4SToshiba/WestinghouseParametersValueElectricalcapacity10MWe(50
41、MWe)Thermalcapacity30MWt(135MWt)PrimarycoolantSodiumConfigurationPoolSystem pressure(MPa)Non-pressurizedFuel(enrichment)U-Zrmetal(20%)ReactivitycontrolReflector,rodRefuelingcycle30years(10years)Designlife30yearsp4SSuperSafeSmallandSimple,designedbyToshibapSodium-cooledpool-typefastreactorwithmetalfu
42、el3.5 4SIntroductionThe4Sisnotabreederreactor.The 4S offers two outputs of 10 MWe and 50 Mwe.These energyoutputsareselectedfromthedemandanalyses.Target ApplicationnThe 4S is designed as distributed energy source for multi-purpose applications such as electricity supply to remote areas,mining sites.n
43、The plant can be configured to deliver hydrogen and oxygen using the process of high temperature electrolysis.This process can be performed without producing environmentally disadvantageous byproducts,such as carbon dioxide.3.5 4S Design Philosophy The4Sreactorisanintegralpooltypewithalltheprimaryco
44、mponentsinstalledinsidethereactorvessel(RV).The 4S design is optimized to achieve the improvement of publicacceptanceandsafety,minimizationoffuelcost,adequatefuelburn-upandreductionincoresize.Thereflectorsurroundingthecoregraduallymoves,compensatingfortheburnupreactivitylossoverthecorelifetime.Thepl
45、antelectricpowercanbecontrolledbythewatersteamsystem,whichmakesthereactorapplicableforaloadfollowoperationmode.3.5 4SDecay Heat Removal SystemThewater/steamsystemisavailablefornormalshutdownheatremoval.Twoindependentpassivesystemsareprovidedfordecayheatremoval:theReactor Vessel Auxiliary Cooling Sys
46、tem(RVACS)and the intermediatereactorauxiliarycoolingsystem(IRACS)TheRVACSiscompletelypassiveandremovesdecayheatfromthesurfacesoftheguardvessel(GV)usingnaturalcirculationofair.TheRVACS isalwaysinoperation,evenwhenthereactoroperatesatratedpowerTheIRACSremovesdecayheatbyaircoolerwhichisarrangedinserie
47、swiththesecondarysodiumloop.HeatisremovedbyforcedsodiumandaircirculationattheIRACSwhenelectricpowerisavailable.3.5 4S Engineered Safety System Approach and ConfigurationTherearetwoindependentsystemsforreactorshutdown.Theprimaryshutdownsystemprovidesforadropofseveralsectorsofthereflector,and the back
48、-up shutdown system provides for insertion of theultimateshutdownrodfromafullyoutpositionatthecorecenter.Thereflectorsandtheshutdownrodarefallenbygravityonscram.BoththereflectorandshutdownrodareeachcapableofenoughnegativereactivitytoshutdownthereactorSVBR-1003.6 SVBR-100ParametersValueElectricalcapa
49、city101MWeThermalcapacity280MWtPrimarycoolantLead-BismuthConfigurationPoolSystempressure(MPa)LowpressureCoreinlet/exittemperatures()340/485PowerconversionIndirectRankineFuel(enrichment)UO2/hex(19.3%)Refuelingcycle8yearsDesignlife60yearsp TheSVBR-100isamultipurposesmallmodularfastreactor,cooledbylead
50、bismuth(LBE)SVBR-100designisbasedonoperationalexperienceofLBEcooledreactorsforsubmarinepropulsionapplication.TheSVBRtechnology,isclaimedasaGenerationIVnuclearreactor.Design Philosophy Target Application-ModularNPPofsmall,mediumorlargepower;-Regionalnuclearheatingandelectricitygeneratingplantof200-60