垂径定理(上示范课用).ppt

上传人:hyn****60 文档编号:87271594 上传时间:2023-04-16 格式:PPT 页数:37 大小:822.50KB
返回 下载 相关 举报
垂径定理(上示范课用).ppt_第1页
第1页 / 共37页
垂径定理(上示范课用).ppt_第2页
第2页 / 共37页
点击查看更多>>
资源描述

《垂径定理(上示范课用).ppt》由会员分享,可在线阅读,更多相关《垂径定理(上示范课用).ppt(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、垂径定理垂径定理圆的相关概念圆的相关概念l圆上任意两点间的部分叫做圆上任意两点间的部分叫做圆弧圆弧,简称简称弧弧.l直径直径将圆分成两部分将圆分成两部分,每一部分都叫每一部分都叫做半圆做半圆(如弧如弧ABC).n连接圆上任意两点间的线段叫做连接圆上任意两点间的线段叫做弦弦(如弦如弦AB).On经过圆心的弦叫做经过圆心的弦叫做直径直径(如直径如直径AC).ABn以以A,B两点为端点的两点为端点的弧弧.记作记作 ,读作读作“弧弧AB”.ABn小于半圆的小于半圆的弧弧叫做劣弧叫做劣弧,如记作如记作 (用两个字母用两个字母).AmBn大于半圆的大于半圆的弧弧叫做优弧叫做优弧,如记作如记作 (用三个字母

2、用三个字母).ABCmD 实践探究实践探究把一个圆沿着它的任意一条直径对折,把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到重复几次,你发现了什么?由此你能得到什么结论?什么结论?可以发现:可以发现:圆是轴对称图形,任何一条直径所在直线都是圆是轴对称图形,任何一条直径所在直线都是它的对称轴它的对称轴l圆是轴对称图形圆是轴对称图形.圆的对称轴是圆的对称轴是任意一条经过圆心的直线任意一条经过圆心的直线,它有无它有无数条对称轴数条对称轴.O可利用折叠的方法即可解决上述问题可利用折叠的方法即可解决上述问题.如图,如图,AB是是 O的一条弦,做直径的一条弦,做直径CD,使,使CDA

3、B,垂足为,垂足为E(1)圆是轴对称图形吗?如果是,它的对称轴是什么?)圆是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么?)你能发现图中有那些相等的线段和弧?为什么?OABCDE活活 动动 二二(1)是轴对称图形直径)是轴对称图形直径CD所在的所在的直线是它的对称轴直线是它的对称轴(2)线段:线段:AE=BE弧弧:AC=BC,AD=BD把圆沿着直径把圆沿着直径CD折叠时,折叠时,CD两侧的两个两侧的两个半圆重合,点半圆重合,点A与点与点B重合,重合,AE与与BE重合,重合,AC,AD分别与分别与BC、BD重合重合OABCDE垂径定理:垂径定理:垂直于弦

4、的直径平分垂直于弦的直径平分弦,并且平分弦所对的两条弧弦,并且平分弦所对的两条弧平分弦(不是直径)的直径垂直于弦,并且平分弦平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧所对的两条弧即直径即直径CD垂直于弦垂直于弦AB,平分弦,平分弦AB,并且平分并且平分AB及及ACBAM=BM,垂径定理垂径定理lAB是是 O的一条弦的一条弦.l你能发现图中有哪些等量关系你能发现图中有哪些等量关系?与同伴说说你的想法和理由与同伴说说你的想法和理由.n作直径作直径CD,使使CDAB,垂足为垂足为M.On下图是轴对称图形吗下图是轴对称图形吗?如果是如果是,其对称轴是什么其对称轴是什么?ABCDMAmBn

5、由由 CD是直是直径径 CDAB可推得可推得 AC=BC,AD=BD.题设题设结论结论垂径定理垂径定理l如图如图,小明的理由是小明的理由是:l连接连接OA,OB,OA,OB,OABCDM则则OA=OB.在在RtOAM和和RtOBM中中,OA=OB,OM=OM,RtOAM RtOBM.AM=BM.点点A和点和点B关于关于CD对称对称.O关于直径关于直径CD对称对称,当圆沿着直径当圆沿着直径CD对折时对折时,点点A与点与点B重合重合,AC和和BC重合重合,AD和和BD重合重合.AC=BC,AD=BD.垂径定理垂径定理三种语言三种语言l定理定理:垂直垂直于弦的于弦的直径直径平分弦平分弦,并且平分弦所

6、对的两条弧并且平分弦所对的两条弧.l老师提示老师提示:l垂径定理是垂径定理是圆中一个重圆中一个重要的结论要的结论,三三种语言要相种语言要相互转化互转化,形成形成整体整体,才能运才能运用自如用自如.OABCDMCDAB,如图如图 CD是直径是直径,AM=BM,AC=BC,AD=BD.“知二推三知二推三”(1)垂直于弦垂直于弦 (2)过圆心过圆心 (3)平分弦平分弦 (4)平分弦所对的优弧平分弦所对的优弧 (5)平分弦所对的劣弧平分弦所对的劣弧注意注意:当具备了当具备了(1)(3)(1)(3)时时,应对另一应对另一 条弦增加条弦增加”不是直径不是直径”的限制的限制.CDAB,垂径定理的垂径定理的逆

7、定理逆定理lAB是是 O的一条弦的一条弦,且且AM=BM.l你能发现图中有哪些等量关系你能发现图中有哪些等量关系?与同伴说说与同伴说说你的想法和理由你的想法和理由.n过点过点M作直径作直径CD.On右图是轴对称图形吗右图是轴对称图形吗?如果是如果是,其对称轴是什么其对称轴是什么?CDn由由 CD是直是直径径 AM=BM可推得可推得 AC=BC,AD=BD.MAB平分平分弦(不是直径)的弦(不是直径)的直径直径垂直于弦垂直于弦,并且平并且平 分弦所对的两条弧分弦所对的两条弧.不是直径不是直径 赵州桥的主桥拱是圆弧形,它的跨度(弧所对赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为的弦的长)为

8、37.437.4米,拱高(弧的中点到弦的距离)米,拱高(弧的中点到弦的距离)为为7.27.2米,你能求出赵州桥主桥拱的半径吗?米,你能求出赵州桥主桥拱的半径吗?问问题题?OAB 例例1 1:赵州桥的主桥拱是圆弧形,它的跨度(弧所对:赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为的弦的长)为37.437.4米,拱高(弧的中点到弦的距离)为米,拱高(弧的中点到弦的距离)为7.27.2米,你能求出赵州桥主桥拱的半径吗?米,你能求出赵州桥主桥拱的半径吗?问问题题?OABDCr练习:练习:5.在在 中,、中,、AC为为互相垂直且相等互相垂直且相等的两条弦,的两条弦,于,于,于于求证:四边形是正方形

9、求证:四边形是正方形2如图,在如图,在 O中,中,AB、AC为互相垂直且相等的两为互相垂直且相等的两条弦,条弦,ODAB于于D,OEAC于于E,求证四边形,求证四边形ADOE是正方形是正方形DOABCE证明:证明:四边形四边形ADOE为矩形,为矩形,又又AC=AB AE=AD 四边形四边形ADOE为正方形为正方形.OEAC ODAB1.1.在直径为在直径为650mm650mm的圆柱形油槽内装入一些油后,截面如图所示的圆柱形油槽内装入一些油后,截面如图所示.若油面宽若油面宽AB=600mmAB=600mm,求油的最大深度,求油的最大深度.ED 600CD在直径为在直径为650650mmmm的圆柱

10、形油槽内装入一些油后,截面的油面宽的圆柱形油槽内装入一些油后,截面的油面宽AB=600AB=600mmmm,求油的最大深度,求油的最大深度.BAO600 650DCED 600CD 如图,已知在如图,已知在 O中,中,弦弦AB的长为的长为8厘米,圆心厘米,圆心O到到AB的距离为的距离为3厘米,厘米,求求 O的半径。的半径。E.ABO练一练:试练一练:试 金金 石石解:连结解:连结OA。过。过O作作OEAB,垂足为,垂足为E,则则OE3厘米,厘米,AEBE。AB8厘米厘米 AE4厘米厘米 在在Rt AOE中,根据勾股定理有中,根据勾股定理有OA5厘米厘米 O的半径为的半径为5厘米。厘米。试一试试

11、一试P931111驶向胜利的彼岸挑战自我画一画l如如图图,M,M为为OO内内的的一一点点,利利用用尺尺规规作作一一条条弦弦AB,AB,使使ABAB过点过点M.M.并且并且AM=BM.AM=BM.OM2 2、如图、如图4 4,在,在O O中,中,ABAB为为O O的弦,的弦,C C、D D是直是直线线ABAB上两点,且上两点,且ACACBDBD求证:求证:OCDOCD为等腰三角为等腰三角形。形。E3 3、如图如图,两个圆都以点,两个圆都以点O O为圆心,小圆的弦为圆心,小圆的弦CDCD与大圆的弦与大圆的弦ABAB在同一条直线上。你认为在同一条直线上。你认为ACAC与与BDBD的的大小有什么关系?

12、为什么?大小有什么关系?为什么?G挑战自我垂径定理的推论 l如果圆的两条弦互相平行如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗那么这两条弦所夹的弧相等吗?l老师提示老师提示:这两条弦在圆中位置有两种情况这两条弦在圆中位置有两种情况:随堂练习随堂练习P921010驶向胜利的彼岸OABCD1.两条弦在圆心的同侧两条弦在圆心的同侧OABCD2.两条弦在圆心的两侧两条弦在圆心的两侧垂径定理的推论垂径定理的推论 圆的两条平行弦所夹的弧相等圆的两条平行弦所夹的弧相等.已知:已知:O中弦中弦ABCD。求证:求证:ACBD证明:作直径证明:作直径MNAB。ABCD,MNCD。则。则AMBM,CMDM(垂

13、(垂直平分弦的直径平分弦所对的弦)直平分弦的直径平分弦所对的弦)AMCM BM DMACBD.MCDABON讲解讲解如果圆的两条弦互相平如果圆的两条弦互相平行,那么这两条弦所夹行,那么这两条弦所夹的弧相等吗?的弧相等吗?圆的两条平行弦所夹的弧相等圆的两条平行弦所夹的弧相等垂径定理的推论垂径定理的推论 l如果圆的如果圆的两条弦互相平行两条弦互相平行,那么这两条弦所夹的弧相等吗那么这两条弦所夹的弧相等吗?l老师提示老师提示:这两条弦在圆中位置有两种情况这两条弦在圆中位置有两种情况:OABCD1.两条弦在圆心的同侧两条弦在圆心的同侧OABCD2.两条弦在圆心的两侧两条弦在圆心的两侧垂径定理的推论垂径

14、定理的推论 圆的两条平行弦所夹的弧相等圆的两条平行弦所夹的弧相等.MM如何找圆心?如何找圆心?l当未知一个圆或一条弧的圆心时,如何把它找出来?8.已知已知P为为内一点,且内一点,且OP2cm,如果,如果的半径是的半径是,则过,则过P点的最长点的最长的弦等于的弦等于.最短的弦等于最短的弦等于_。o o随堂训练随堂训练OAPBNM双基训练双基训练 5.如图如图,将半径为将半径为2cm的圆形纸片折叠后,圆弧的圆形纸片折叠后,圆弧恰好经过圆心,则折痕恰好经过圆心,则折痕AB的长为的长为()A.2cm B.cm C.cm D.cmC6.已知点已知点P是半径为是半径为5的的 O内内的一定点,且的一定点,且

15、OP=4,则过,则过P点的所有弦中,弦长可能取点的所有弦中,弦长可能取的整数值为(的整数值为()A.5,4,3 B.10,9,8,7,6,5,4,3 C.10,9,8,7,6 D.10,9,8COBA12.12.已知直径已知直径ABAB被弦被弦CDCD分成分成AE=4,AE=4,EB=8,CDEB=8,CD和和ABAB成成30300 0角角,则弦则弦CDCD的弦心距的弦心距OF=_;CD=_.OF=_;CD=_.1EOABCDF在在a,d,r,ha,d,r,h中,已知其中任中,已知其中任意两个量意两个量,可以求出其它可以求出其它两个量两个量.d+h=rd+h=r13.已知:如图,直径已知:如图

16、,直径CDAB,垂足为,垂足为E.若半径若半径R=2,AB=,求求OE、DE 的长的长.若半径若半径R=2,OE=1,求,求AB、DE 的长的长.由由、两题的启发,你还能编出什么其他两题的启发,你还能编出什么其他问题?问题?试一试试一试P931212挑战自我挑战自我填一填填一填l1、判断:、判断:l 垂直于弦的直线平分这条弦垂直于弦的直线平分这条弦,并且平分弦所对并且平分弦所对 的两条弧的两条弧.()l平分弦所对的一条弧的直径一定平分这条弦所平分弦所对的一条弧的直径一定平分这条弦所 对的另一条弧对的另一条弧.()l经过弦的中点的直径一定垂直于弦经过弦的中点的直径一定垂直于弦.()l圆的两条弦所

17、夹的弧相等,则这两条弦平行圆的两条弦所夹的弧相等,则这两条弦平行.l弦的垂直平分线一定平分这条弦所对的弧弦的垂直平分线一定平分这条弦所对的弧.()l3、已知:如图,、已知:如图,O 中,中,AB为为 弦,弦,C 为为 弧弧AB 的中点,的中点,OC交交AB 于于D,AB=6cm,CD=1cm.求求 O 的半径的半径OA.4、如图为一圆弧形拱桥,半径、如图为一圆弧形拱桥,半径OA=10m,拱高为拱高为4m,求拱桥跨度,求拱桥跨度AB的长。的长。l4.如图如图,圆圆O与矩形与矩形ABCD交于交于E、F、G、H,EF=10,HG=6,AH=4.求求BE的长的长.ABCD0EFGHMN学生练习学生练习

18、已知:已知:AB是是 O直径,直径,CD是弦,是弦,AECD,BFCD求证:求证:ECDF.AOBECDF小结小结:解决有关弦的问题,经常是过圆心作解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连结半弦的垂线,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件。径等辅助线,为应用垂径定理创造条件。.CDABOMNE.ACDBO.ABO已知:已知:ABAB和和CDCD是是OO内的两条平行弦,内的两条平行弦,AB=6cmAB=6cm,CD=8cmCD=8cm,OO的半径为的半径为5cm5cm,思考题:思考题:(1 1)请根据题意画出符合条件的图形)请根据题意画出符合条件的图形(2 2)求出)求出ABAB、与、与CDCD间的距离。间的距离。(1)(2)常用辅助线常用辅助线:垂直于弦的直径垂直于弦的直径

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁